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ABSTRACT

We develop practical rate distortion bounds for speech cod-
ing based on composite source models and the PESQ-MOS
distortion measure. Specifically, the bounds are formulated
using composite source models for speech, the rate distortion
function for Gaussian autoregressive sources, the classical re-
verse water-filling result, and conditional rate distortion the-
ory, along with a recently devised MSE-to-PESQ-MOS map-
ping. The resulting rate distortion bounds are shown to lower
bound the performance of the AMR, G.729, and G.718 stan-
dardized codecs, and based on the tightness of these bounds,
to indicate how the performance of voice codecs might be im-
proved.

Index Terms— Speech coding, Rate distortion bounds,
Speech codec performance

1. INTRODUCTION

Speech coding plays a significant role in digital cellular, Voice
over IP (VoIP), and Voice over Wireless LAN (VoOWLAN) ap-
plications, and extraordinary progress has been made in de-
veloping standardized speech codecs for these applications.
In order to evaluate these codecs, it would be very useful
if meaningful rate distortion bounds on the performance of
speech codecs were available, thus helping to guide future di-
rections in speech coding research.

In particular, it would be of great utility if the past 50 years
of rate distortion theory results could be applied to bounding
the performance of practical codecs. Gallager, in his classic
text on Information Theory [1], summarizes the challenges in
doing so when he notes that information theory has been more
useful for channel coding than for source coding and that the
reason, “...appears to lie in the difficulty of obtaining reason-
able probabilistic models and meaningful distortion measures
for sources of practical interest.” He goes on to say, “...it is
not clear at all whether the theoretical approach here will ever
be a useful tool in problems such as speech digitization ...”

[1].
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In this paper, we utilize recently formulated composite
source models for speech [2], the classical water-filling result
for each composite subsource [3, 4], conditional rate distor-
tion theory [5], and results on mapping MSE to PESQ-MOS,
to obtain true rate distortion bounds for voice codecs subject
to a perceptually meaningful distortion measure. These rate
distortion bounds are shown to lower bound the best known
standardized voice codecs, including AMR-NB, G.718, and
G.729, thus revealing the limitations of the voice codecs for
different speech sources and indicating where voice codec
performance can be improved.

The paper is organized as follows. Some relevant prior
work is described in Section 2. Section 3 provides some
needed background on rate distortion functions for autore-
gressive sources, and a brief description of reverse water-
filling is given in Section 4. Specifics concerning the compos-
ite source models are described in Section 5, and conditional
rate distortion functions based on MSE are briefly explained
in Section 6. The standardized PESQ-MOS, and the steps per-
formed to generate the MSE-to-PESQ-MOS mapping func-
tion are given in Section 7. Rate distortion bounds based
on the PESQ-MOS distortion measures are contained in Sec-
tion 8, and comparisons of the performance of standardized
codecs to these bounds are given. Conclusions are presented
in Section 9, wherein the contributions of the current work are
summarized.

2. RELEVANT PRIOR WORK

In [6], composite source models for speech are obtained by
Itakura-Saito segmentation of the speech into equal order
autoregressive subsources, and by calculating lower bounds
to the rate distortion function for different numbers of sub-
sources, it is shown that a relatively small number of sub-
sources (6 in the cited paper) is needed to have a good com-
posite source model for speech. No comparisons to standard-
ized speech codecs are given.

A cochlear model serves as the basis for a perceptual dis-
tortion measure for speech in [7], and the cochlear models are
used to characterize the rate distortion function for speech and
to compare to the operational rate distortion performance of
common voice codecs. Among the interesting results are that



the Shannon lower bound for this distortion measure is only
tight at very small distortions and that the voice codecs eval-
uated required more than twice the minimum rate to achieve
the same distortion.

Gibson, Hu, and Ramadas [2] obtained rate distortion
bounds for speech coding based on composite source mod-
els and unweighted and weighted mean squared error (MSE)
distortion measures. The composite source models are con-
structed by classifying each sentence as Voice (V), Unvoiced
(UV), Onset (ON), Hangover (H), and Silence (S). The V,
ON, and H modes are modeled as autoregressive with dif-
ferent orders, and the UV mode is modeled as uncorrelated.
Unfortunately, the performance of code excited linear predic-
tion (CELP) codecs, such as G.729 and AMR-NB, is not ac-
curately represented by unweighted MSE and useful weighted
MSE distortion measures were not found. In the current work,
we are able to develop composite source models following [2]
and combine them with a perceptual PESQ-MOS distortion
measure to obtain valid, meaningful bounds on speech codec
performance.

3. RATE DISTORTION BACKGROUND

A natural starting point for the development of fundamental
limits for speech coding is Shannon’s rate distortion theory
[8], a historical discussion of which is presented by Berger
and Gibson [9]. Since Shannon’s rate distortion theory re-
quires an accurate source model and a meaningful distortion
measure, and both of these are difficult to express mathemat-
ically for speech, these requirements have limited the impact
of rate distortion theory on the lossy compression of speech.
There have been some notable advances and milestones,
however. Berger [3] and Gray [10], in separate contributions
in the late 60’s and early 70’s, derived the rate distortion func-
tion for Gaussian autoregressive (AR) sources for the squared
error distortion measure, as summarized in the following the-
orem:
Theorem 3.1 Let {X;} be an mth-order autoregressive
source generated by an i.i.d. N(0,0?) sequence {Z} and
the autoregression constants ai, ..., am. Then the MSE rate
distortion function of { X} is given parametrically by
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A limitation of these resultski_slthat the distortion measure
is MSE and the source model is assumed to be known, even
the predictor coefficients, which are actually changing frame-
to-frame, so rate distortion bounds calculated using coeffi-
cients averaged over an entire sentence do not provide useful

bounds. As a result, we model the input speech to be com-
pressed as a composite source consisting of subsources with
different characteristics and that occur with some probability.
Further we incorporate a perceptual distortion measure that
allows easy evaluation of standardized speech codecs.

Our work here is motivated by the prior work on rate dis-
tortion bounds for video by Hu and Gibson [11, 12, 13, 14].

4. REVERSE WATER-FILLING

To calculate rate distortion functions for the subsources in the
composite source model, we use the squared error fidelity cri-
terion and the classic eigenvalue decomposition [4] and re-
verse water-filling approach [ 15]. This standard result is given
in the theorem below [16].
Theorem 4.1 Rate Distortion Function for Parallel Gaus-
sian Sources

Let X; ~ N(0,02),i =1,2,..., N, be independent Gaus-
sian random variables and let the distortion measure be
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In the following, we view each of the parallel Gaussian
sources as decompositions in the frequency domain. The
main departure of the current work from prior efforts to cal-
culate rate distortion functions for AR sources and speech is
that we utilize a perceptual distortion measure, and we em-
ploy reverse water-filling for each of the identified modes of
the composite source model and then combine the resulting
rate distortion functions using conditional rate distortion the-

ory.
5. COMPOSITE SOURCE MODELS

It was recognized early on that sources may have multiple
modes and could switch between modes probabilistically, and
such sources were called composite sources in the rate distor-
tion theory literature [3]. Multimodal models have played a
major role in speech coding, including the voiced/unvoiced
decision for the excitation in linear predictive coding (LPC)
[17] and the long-term adaptive predictor in adaptive predic-
tive coding (APC) [18]. Further, phonetic classification of
the input speech into multiple modes and coding each mode
differently has lead to some outstanding voice codec designs
[19, 20].

Ramadas and Gibson’s [21] work on speech coding has
built on these prior contributions and they have developed a
mode classification method that breaks the input speech into
Voiced (V), Onset (ON), Hangover (H), Unvoiced (UV), and



Table 1. Composite Source Models for Speech Sentences

Sequence Autocorrelation coefficients for V, ON, H Mean Square
(Gender) Mode | Average frame energy for UV Prediction Error | Probability
(Active speech level)
“lathe” v [10.82170.5592 0.3435 0.1498 0.0200 0.0656 0.5265
(Female) —0.0517 —0.0732 —0.0912 —0.1471 —0.2340]
(—18.1 dBov) ON [10.84950.5962 0.3979 0.2518] 0.0432 0.0093
H [10.27090.2808 0.1576 0.1182] 0.7714 0.0186
UV | 0.1439 0.1439 0.0771
S 0.3685
“we were away”’ \Y% [10.80140.5176 0.2647 0.0432 —0.1313 0.0780 0.9842
(Male) —0.2203 —0.3193 —0.3934 —0.4026 —0.3628]
(—16.5 dBov) ON [10.85910.72150.6128 0.5183] 0.0680 0.0053
H 0
uv 0
S 0.0105
Silence (S) modes, each of which may be coded at a differ- Y is defined as
ent rate. We use these modes to develop a composite source . .
model for speech here. We model Voiced speech as a 10" Rx)y (D) = X min _ I(X; Xl)Y), ()
order AR Gaussian source, Onset as a 4" order AR Gaus-  where p(le.y): DX XIY)<D

sian source, Hangover as a 4*" order AR Gaussian source,
Unvoiced speech as a memoryless Gaussian source, and si-
lence is treated by sending a code for comfort noise genera-
tion. In particular, Table 1 presents the autocorrelation values
and mean squared prediction error for the several modes for
two sentences. The probability of each mode is also shown
in Table 1. For example, the sentence, “We were away” has
98.42% classified as Voiced. We have calculated similar data
for many speech utterances, but only these two are presented
here due to space limitations.

There are a few things to note about the data in Table 1.
First, the average frame energy for the UV mode and the mean
squared prediction errors for the other modes are normalized
to the average energy over the entire sentence since the MSE
of the mapping function is normalized by the average energy.
Second, the sentence, “We were away” has only 1.05% classi-
fied as Silence, while the sentence, “Lathe” has 36.85% clas-
sified as Silence. These Silence sections are assumed to be
transmitted using a fixed length code to represent the length
of the Silence intervals and to represent comfort noise to be
inserted in the decoded stream.

Further work on developing appropriate composite mod-
els for speech is underway to optimize the phonetic classifica-
tion of the modes, the AR model order for the Voiced, Onset,
and Hangover modes, and to investigate alternative models
for the Onset and Hangover modes. Since these operations
are done off-line and only once per utterance, complexity is
not a major issue.

6. CONDITIONAL RATE DISTORTION FUNCTIONS
BASED ON MSE

Given the composite source models from Section 5, a rate
distortion bound based on MSE [2] is derived using the con-
ditional rate distortion results from Gray [5]. The conditional
rate distortion function of a source X with side information
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It can be proved [5] that the conditional rate distortion func-
tion in Eq. (7) can also be expressed as
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and the minimum is achieved by adding up the individual,
also called marginal, rate-distortion functions at points of
equal slopes of the marginal rate distortion functions.
Utilizing the classical results for conditional rate dis-
tortion functions in Eq. (9), the minimum is achieved at
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are equal for all y and

7. MAPPING MSE TO PESQ-MOS

Perceptual evaluation of speech quality (PESQ) [22] is a
standardized objective method for end-to-end speech qual-
ity assessment of narrow-band speech codecs. Therefore, the
PESQ-MOS of each speech codec is easy to measure, and
a rate distortion bound based on PESQ-MOS is particularly
useful.

The distance between the original and degraded speech
signal, PESQ score, is calculated based on the PESQ percep-
tual model. The PESQ score is mapped to a MOS-like scale
by a monotonic function. The MOS-like PESQ (PESQ-MOS)
is a single number in the range of —0.5 and 4.5. Even though
PESQ-MOS is not the same as MOS, and it has known limita-
tions, it is a standardized objective measure for evaluating the
perceptual performance of speech codecs that is widely used
and quoted.

ADPCM coders are waveform coders. Thus, MSE is an



indicator of how well these codecs reproduce the input speech
waveform, and it is also useful in establishing the relative or-
dering of the performance of ADPCM speech coders. In addi-
tion, the PESQ-MOS of ADPCM coders can be evaluated eas-
ily, thus providing a perceptual distortion that can be aligned
with the MSE achieved by each codec at the given rate for the
selected input utterance.

G.726 [23, 24] and G.727 [25, 24] are standardized AD-
PCM speech coders. These codecs have four selectable trans-
mitted bit rates of 40, 32, 24, and 16 kbps. Since G.727
is an embedded coder, ITU-T G.727 Recommendation [25]
provides coding rates of 40 kbps for the 3 combinations, 32
kbps for 3 combinations, 24 kbps for 2 combinations, and 16
kbps for one combination, resulting in 9 pairs of coding rates.
Therefore with the 4 coding rates for G.726 and the 9 coding
rates for G.727, there are 13 MSE and PESQ pairs to generate
a mapping function for each sentence.

For each speech sequence, the MSE of each coded se-
quence is calculated and normalized by the average energy
of the original sequence. The PESQ-MOS of each coded se-
quence is evaluated by the software provided by ITU-T Rec-
ommendation P.862 [22], and 13 pairs of MSE and PESQ are
used for curve fitting for each sequence. Since MSE is in-
creasing and PESQ is decreasing as the bit rate is reduced, an
exponential function is chosen as the mapping function since
it provides a good fit across all rates and distortion pairs. The
range of PESQ-MOS is between —0.5 and 4.5 [22], so the
PESQ-MOS is 4.5 when MSE is 0. Therefore, the mapping
function is modeled as

2= f(w) =ae ™ +4.5 —a, (10)
where w is MSE, z is PESQ-MOS, and a and b are estimated
by the least squares fit of the 13 MSE and PESQ pairs of
G.726 and G.727.

Fig. 1 is an example of the mapping function generated
by ADPCM waveform codecs. The MSE/PESQ-MOS pairs
are fitted with the exponential mapping function, and Fig. 1
shows that the exponential function provides a good fit to the
MSE/PESQ-MOS pairs.

8. RATE DISTORTION BOUNDS FOR SPEECH
BASED ON PESQ-MOS

The rate distortion bound using MSE as distortion measure is
calculated by the classical eigenvalue decomposition [4] and
reverse water-filling approach described in Section 4 with the
composite source models presented in Section 5. Then the
rate distortion bound based on MSE is mapped to PESQ-
MOS measure by the mapping function generated by AD-
PCM waveform codecs as described in Section 7.

The details of each test sequence are also shown in Ta-
ble 1. The active speech level of each sequence is computed
based on ITU-T P.56 [26, 24]. ITU-T Recommendation P.830
[27] mentions that the nominal value for mean active speech
level is —26 dBov, and that the active speech level should be
observed during recording. Therefore, the active speech level

"we were away"

o G.726
4.5 - G.727 2 core bits
o (G.727 3 core bits
A G.727 4 core bits

— 2.4636exp(—-33.4026x)+2.0364
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Fig. 1. The mapping function of sequence “We were away a
year ago.”

of the test sequences we used is greater than —26 dBov.

The rate distortion bounds for each of the composite
source modes of the two sequences are shown in Figs. 2 and
3. It is interesting to see that the rate distortion functions for
the modes differ across the two sentences. It is also inter-
esting to note the very profound effect of the probabilities of
the different modes. A speech sequence with considerably
more voiced or unvoiced segments would weight the marginal
rate distortion functions differently and thus produce a quite
different conditional rate distortion bound. In Fig. 3, since
the sequence is 98.42% Voiced, the conditional rate distortion
function is dominated by the marginal rate distortion func-
tion of the voiced mode. Since there is 36.85% Silence in
the sequence “A lathe is a big tool,” the final conditional rate
distortion function is lower than all of the marginal rate dis-
tortion functions.

The rate distortion bounds based on PESQ-MOS are com-
pared with CELP codecs such as AMR-NB, G.729, and G.718
[28], and ADPCM coders, G.726 and G.727 in Figs. 4 and
5. For AMR-NB, 8 different bit-rates, 12.2, 10.2, 7.95, 7.4,
6.7,5.9,5.15, and 4.75 kbps, are used, and source controlled
rate operation is enabled. For G.729, 3 different bit-rates,
6.4, 8, and 11.8 kbps, are used, and DTX/CNG is enabled.
For G.718, 2 different bit-rates, 8 and 12 kbps, are used, and
DTX/CNG is enabled as well. For G.726 and G.727, 4 bit-
rates, 16, 24, 32, and 40 kbps are compared. Since G.727 is
an embedded speech codec, codecs with 2 core bits are used
in our experiments. The PESQs of all speech codecs are com-
puted by ITU-T P.862 [22, 24].

From Figs. 4 and 5, we see that the performance of all
codecs is lower bounded by the rate distortion bounds. In
addition, CELP codecs such as AMR-NB, G.729, and G.718
are much closer to the rate distortion bounds than ADPCM
coders, which fits our intuition. Since G.727 is an embedded
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Fig. 4. The rate distortion bounds and operational rate distor-
tion performance of speech codecs of the sequence “A lathe
is a big tool.”

ADPCM coder, the performance of G.727 with 2 core bits
is worse than that of G.726. The performance of AMR-NB,
G.729, and G.718 are quite close. Since they have Voice Ac-
tivity Detection (VAD) and encode silence by comfort noise
generation, the average bit-rate of these codecs is between 1
bit/sample and 1.5 bit/sample for a PESQ-MOS of 4.0 or bet-
ter.

The performance of the codecs for the utterance “We were
away a year ago” is closer to the rate distortion bound than
other sequences. This is because “We were away a year ago”
is a fully voiced sequence, and the composite source model is
dominated by the voiced mode, which is modeled as a 10th
order AR Gaussian source. Therefore, it is evident that the
AMR-NB, G.729, and G.718 voice codecs, all based on the
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Fig. 3. The marginal and conditional rate distortion bounds
based on PESQ of the sequence “We were away a year ago.”
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Fig. 5. The rate distortion bounds and operational rate distor-
tion performance of speech codecs of the sequence “We were
away a year ago.”

CELP predictive coding paradigm are quite efficient at cod-
ing voiced speech. However, other speech modes are perhaps
less well-modeled by these codecs, and hence, less efficiently
coded.

These results show that our new rate distortion bounds do
lower bound the PESQ-MOS performance of the best known
standardized speech codecs. However, there is room to im-
prove the bounds by better mode selection and better mod-
eling of the modes. This is the subject of on-going work.
However, these are the first true bounds on the rate distor-
tion performance of standardized speech codecs to date, and
they offer deep insights into how the existing codecs can be
improved.



9. CONCLUSIONS

We present practical rate distortion bounds for speech coding
based on composite source models and the PESQ-MOS dis-
tortion measure. Comparisons of the rate versus PESQ-MOS
performance of standardized CELP codecs such as AMR-NB,
G.729, G.718, and ADPCM coders, G.726 and G.727, show
that the new rate distortion bound developed here does in fact
lower bound the PESQ-MOS performance of the best known
standardized speech codecs. Further, because of the decom-
position of the speech into various source modes, it is sug-
gested by the tightness of the rate distortion bounds how the
performance of existing codecs might be improved.
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