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ABSTRACT

This paper describes a new method to automatically improve
scene lighting for video conferencing by learning the pho-
tometric mapping between a lower exposure and desired ex-
posure created using High Dynamic Range (HDR) imaging
techniques. Once the mapping is learned in a calibration step,
it can be used to transform all subsequent images, effectively
producing higher dynamic range video without ghosting arti-
facts. A stereo algorithm is also described that allows multiple
exposures to be taken at every frame, useful if the lighting of
a scene changes significantly. Results show that this is an ef-
fective way to improve face lighting and therefore the overall
experience of video conferencing.

Index Terms— High Dynamic Range Video, Radial Ba-
sis Functions, Face Lighting, Video Conferencing

1. INTRODUCTION

Though video conferencing (VC) usage has risen dramati-
cally in recent years, widespread adoption is still hindered
by several technical limitations. One major issue that de-
tracts from the user experience is poor lighting on the face,
due to the low dynamic range of VC camera sensors. When
the background is very bright the face becomes underexposed,
and likewise overexposed in darker rooms. Yet, even an auto-
exposure algorithm that utilizes face detection fails to cor-
rectly expose the entire face if the lighting within the face
itself is highly varying, as is often the case in rooms with sun-
lit windows. As a result, high-end VC installations have very
specific room lighting requirements.

Addressing the face lighting problem is paramount for
mobile video conferencing, which can take place outdoors in
high dynamic range (HDR) conditions. The mobile device
scenario also makes a software solution that can work with
cheap sensors preferable. Many algorithms to automatically
enhance the exposure of images for VC have been proposed.
The method described in [1] first establishes “important” re-
gions within an image, such as skin, and determines a correct
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exposure based on these regions. Skin detection here requires
the development of a skin color model, and [2] includes a
way to build this model at runtime and thus adapt to current
lighting conditions. Similarly, a “desirable” skin color model
can be learned using a database of faces, as in [3]. After the
skin areas are detected, their average gray value is used to
perform global exposure correction using a function that es-
timates how the camera sensor converts exposure into a pixel
value ([1],[4]).

Some disadvantages of these approaches are that they rely
on a skin color model and use a general equation to estimate
the response of the camera sensor and transform colors. These
equations cannot be used to recover the color information of
saturated (white) pixels. A more accurate solution used to
image HDR scenes using low dynamic range sensors has been
well studied and described in [5]. Here, the camera response
curve is first estimated and multiple images of the same scene
taken at different exposures are combined to form an HDR
radiance map. This map can then be viewed on low dynamic
range displays using tone mapping algorithms such as those
described in [6] .

The methods used in [5] and [6] work well with static
scenes, but are not directly applicable to video or moving
scenes because it is impossible to combine multiple expo-
sures without exact correspondences between the images. A
method described in [7] addresses this by taking successive
frames with alternating high and low exposures, and creates
a radiance map by compensating for the global and local mo-
tion between frames. Consequently, the quality of the output
is limited by the quality of the registration, and occlusions and
other regions with poor correspondence can lead to ghosting
artifacts.

The method proposed in this paper eliminates ghosting
and the need to alternate exposure at every frame by com-
bining radiance map recovery [5] and tone mapping [6] with
a learned photometric mapping, as described in [8]. Specif-
ically, during a calibration step at the beginning of a video
chat (or any time initiated by the user), low and high exposure
frames are taken and combined to form an image with “opti-
mal” color balance. During this short calibration (minimum
two frames), it can be assumed that the scene is static, and
therefore image registration is not needed. Once the HDR im-



age is obtained, the photometric mapping between the lower
exposure and this desired image can be learned using Radial
Basis Functions (RBFs). The advantage here is that if future
frames are taken at the same lower exposure, the same map-
ping can be used to transform them without any additional
information. Furthermore, imaging the scene at a lower ex-
posure ensures that none of the face will be overexposed and
color information is retained.

In what follows, Section 2 will provide a summary of the
HDR imaging and tone mapping processes used to create the
desired scene lighting for the single camera case. Then, a
brief discussion of RBFs in Section 3 is followed by a de-
scription of both a single camera and stereo camera imple-
mentation in Section 4. Finally, we will discuss our initial
results and some conclusions.

2. HDR TONE MAPPING

Multiple exposures of a scene are often used to reconstruct
a high dynamic range radiance map, which is then displayed
using tone mapping. The method described in [5] combines
various exposures according to a weighting function derived
from a learned camera response curve. For simplicity, our
implementation uses only two exposures (low and high), and
weights the lower exposure twice as much.

Once the two exposures are combined, a global tone map-
ping procedure outlined in [6] is used to map all pixels back
into displayable range. First, the average log-luminance is
calculated by

Lw = exp

(

1

N

∑

x,y

log(δ + Lw(x, y))

)

, (1)

whereLw is the luma component or Y channel in YCbCr, and
N is the number of pixels. Next, the entire image is scaled
according to

L(x, y) =
a

Lw

Lw(x, y) (2)

so thatLw maps to a desired key valuea, which we set to .5. A
contrast enhancement is also performed by compressing high
luminances with

Ld(x, y) =
L(x, y)

(

1 + L(x,y)
L2

white

)

1 + L(x, y)
, (3)

whereLwhite is the smallest luminance mapped to white, nor-
mally set to the maximum luminance in the radiance map.
Because colors can become desaturated when imaging at low
and high exposures, we also subtly increase the color satura-
tion of the tone mapped image.

3. RADIAL BASIS FUNCTIONS

Radial basis functions are next used to learn the photomet-
ric mapping between the lower exposure image and the tone

mapped HDR image. The advantage of learning this mapping
is that it can be applied to other frames that do not have mul-
tiple exposure information. Non-parametric regression using
RBFs has been used in other contexts such as image coloriza-
tion and seamless mosaicking [8]. The goal is to estimate
a functionf , given a training set of input-output mappings
xi → yi wherexi ∈ R

n andyi ∈ R . This leads to the
minimization of [8]

H(f) =

N
∑

i=1

(f(xi) − yi)
2 + λφ(f), (4)

which is composed of a data fitting term and a regularizing
termφ(f) . The general solution can be derived as

f(x) =

N
∑

i=1

wih(x, xi) +

q
∑

j=1

djψj(x). (5)

Hereh(x, xi) are the radial basis functions, which depend
only on the radial distance from the centroid (h(x, xi) =
h(‖x− xi‖)) and ψj are the basis functions of their null
space. As in [8], we use Gaussian RBFs, whose null space is
empty, and the weights can then be solved with

w = (H + λI)−1y, (6)

whereH is anN × N matrix with hij = h(‖x− xi‖) , I
is an identity matrix, andλ is the regularization parameter.
BecauseN is very large, the number of basis functions is re-
stricted to a much smaller numberM , to form anN × M

matrix Ĥ . Without regularization, the weights estimation
reduces to a Linear Least Squares Estimation problem, such
that

w = Ĥ†y, (7)

whereĤ† represents the pseudo-inverse ofĤ . The advan-
tage again is that the weights only need to be estimated once
(during calibration), assuming that the lighting in the scene
remains fairly constant. The drawback though is that for the
rest of the frames, the distance between each pixel and each
centroid must be calculated to create a newĤ . This process
is also repeated three times, for each RGB channel.

4. IMPLEMENTATION

A customizable stereo camera, shown in Fig. 1, was cre-
ated using two Point Grey Research Firefly cameras. The
small size of the rig allows it to simulate a stereo camera on a
handheld device. Firefly cameras allow for fast exposure con-
trol by varying the shutter speed at every frame. Wide-angle
lenses are also used so that the face can be adequately imaged
from an arms length.



Fig. 1. Handheld Stereo Rig

4.1. Single Camera

Initially, a face aware auto-exposure algorithm can be used
to find the maximum exposure at which the amount of over-
exposed pixels within the face is below a low threshold, but
for the purposes of this paper this step is performed manu-
ally. Then during the calibration step, a much longer expo-
sure is taken and combined with the previous frame. After
performing HDR tone mapping as described in Section 2, an
image with the desired color balance on both the face and
background is formed. Using Gaussian radial basis functions,
we then learn the mapping between the original low exposure
and this HDR image. The number of RBFs is set to 20 and
their centroids are initialized randomly. For the durationof
the video conference, the exposure is kept at the original low
level, and all images are transformed using this mapping.

4.2. Stereo Camera

A stereo camera implementation allows different exposures
to be taken at every time instant. This is useful for mobile
VC, where the colors and global lighting might significantly
change. After calibrating and rectifying the stereo rig [9],
the left and right cameras are run at low and high exposures
respectively. Using a simple normalized correlation stereo
matching algorithm, dense correspondences are estimated and
the right image is warped to the left image. To improve pro-
cessing speed, this matching can be done on subsampled im-
ages without a significant degradation in output quality.

After stereo matching, the warped high exposure image is
combined with the lower exposure to create the desired color
balance again using the HDR tone mapping technique. How-
ever because errors in stereo matching are highly likely, the
images must be masked to remove outliers from the training
set of input-output mappings. In order to reduce the influence
of patches with poor correspondence, only pixels with a corre-
lation greater than .8 are used. Furthermore, we calculate the
perceptually weighted color distance between corresponding
pixels in the lower exposure and the tone mapped image using

CD =

√

(

2 + R
256

)

∆R2 + 4∆G2 +
(

2 + (255−R)
256

)

∆B2,

(8)
whereR is the average red value [10]. Pixels with a color

distance greater than a threshold are thus discarded (in addi-
tion to those with poor stereo matching) to further reduce the
effect of color aberrations.

5. RESULTS

In this section, we show some results for both the single cam-
era and stereo camera implementations. First, in Fig. 2 we
show successive frames (640x480) at low and high exposure
taken with a single camera. In Fig. 2 (a) there are only a few
saturated pixels in the face, however the shadows make the
face much too dark. Alternatively in Fig. 2 (b), the scene is
much brighter, but the tradeoff is that the left side of the face
becomes saturated. This unbalanced and unnatural lightingis
distracting during video conferencing and detracts from the
experience.

(a) (b)

Fig. 2. Single Camera Calibration Images: (a) Low exposure.
(b) High exposure.

For comparison purposes only, Fig. 3 (a) shows the same
time instant, but imaged with the second camera of the stereo
rig running with auto-exposure turned on. Here it is clear that
auto-exposure fails to correctly light the entire face, dueto
the unbalanced lighting. Fig. 3 (b) then shows the output
of the HDR tone mapping procedure described in Section 2.
This image achieves a pleasing balance between the low and
high exposures in Fig. 2. The low exposure and this tone
mapped image are passed into the RBF algorithm asx and
y respectively. Once the mapping weights are learned, Fig.
3 (c) shows the result of applying this mapping to the low
exposure image in Fig. 2 (a).

There is a slight reduction in image quality of the output
compared to the desired image in Fig. 3 (b), as the colors are
less vivid and noise has become more noticeable. This is due
to the fact that the lower signal is being amplified along with
noise. Yet overall the results are convincing, even when us-
ing a small number of RBF centroids. The entire face is now
exposed at an acceptable level, and the background lighting
remains consistent. Any increase in noise may not be notice-
able after the images are compressed for transmission.

Similarly, Fig. 4 shows some results for the stereo im-
plementation. After stereo matching is used to map the right
image to the left, they are combined and masked to remove
outliers as shown in Fig. 4 (c). It is clear that regions with



(a) (b)

(c)

Fig. 3. (a) For comparison, the other camera in the stereo rig
captures with auto-exposure on. (b) HDR tone mapped image
created to produce “desired” color balance. (c) The enhanced
output image, after mapping the low exposure to (b) using
RBFs.

little texture have been removed due to poor correspondence.
Finally, Fig. 4 (d) shows the output after the left image has
been enhanced using the mapping learned with RBFs. The
results are shown for rectified images, but the original images
can be transformed with the same mapping. This shows that
despite not having exact correspondence between exposures
for the entire image, the method is still successful in finding
an accurate mapping for all pixels. Not only is the face cor-
rectly exposed, but the burn out effect of lights on the ceiling
is eliminated.

6. CONCLUSIONS

We have outlined a general purpose method to automatically
increase dynamic range and enhance the lighting of video ex-
posed with low dynamic range sensors. It is especially suit-
able for video conferencing because the scene color informa-
tion remains fairly constant. For scenarios where this might
not be the case, such as mobile VC, a stereo implementa-
tion can be used. The use of radial basis functions is key to
eliminating the need for alternating exposures as well as the
ghosting artifacts common in HDR video. Future work may
incorporate a face aware auto-exposure algorithm and more
adaptive radiance map construction and RBF parameter con-
trol. Methods may also be pursued to reduce computational
overhead while maintaining output quality.

(a) (b)

(c) (d)

Fig. 4. (a) Rectified Left Camera. (b) Rectified Right Camera.
(c) Masked tone mapped image. (d) Enhanced Left Camera
Image.
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