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Abstract—We describe a new method for High Dynamic Range ~ Camera dynamic range is equally important in this scenario.
(HDR) Video using alternating exposures that adds no additnal  Security and surveillance cameras are often placed owtdoor
cost or bandwidth requirements to individual IP cameras, m&ing or near entrances to buildings, exposing them to extreme

it suitable for large scale security and surveillance systaes. it in briaht Most t 8 bit
Sufficient dynamic range is crucial to the efficacy of a survéiance  Varations in brightness. Most cameras capture its pler co

system, as saturated pixels mean a camera can no longer “seies  channel (256 levels), whereas an outdoor sunlit scene might
surrounding environment. High costs associated with hardwre require more than 10,000 levels. Auto-exposure algorithms
for improved dynamic range make them unsuitable for very attempt to minimize the resultant pixel saturation, yetythe
large networks with hundreds or even thousands of cameras. & fail to correctly expose the entire frame. High dynamic rng

outline a scalable software method that uses post-processi to . - . .
combine the information in adjacent frames of a video sequere (HDR) video aims to accurately record scenes with brigrgnes

captured with alternating short and long exposures. In paricular, Variations beyond the capabilities of a typical camera @ens
we introduce a novel bi-directional motion estimation modue
that utilizes block-based motion vectors to register frame with
large differences in global brightness and fast local motio
within saturated regions. An HDR post-processing solutioncan
be deployed at a central location to process individual canta |
streams on an “as needed” basis, removing additional costst a
the device-end. Furthermore, cameras continue to transmitow
dynamic range frames, so there is no additional bandwidth
requirement. Results show significant gains in video qualjt
for inexpensive cameras when exposed to brightness variatis
common in security and surveillance.

|. INTRODUCTION Fig. 1. (a) Low dynamic range frame captured by traditiongbaexposure
t (b) High dynamic range (HDR) frame created using the altérgaexposure

Surveillance and security cameras are vital for the primec technique — note improved clarity and details in the foreged

of borders, military bases, security checkpoints, andoaisp
as well as countless businesses and homes. The usefulreess o
camera for these tasks is strictly determined by video tyali
which is ultimately balanced against costs. In a surveian
or security application, the pixel resolution, field of vieand
dynamic range are paramount. Frame rate and temporalyide
are useful for automated activity detection and objectkirayg e
yet they are secondary to the camera’s main objective td'“
its surrounding environment.

A common surveillance task is the identification of peopl
of interest. Here, a camera needs an unobstructed view of re is significant pixel saturation not only outside, Heba

person’s face or other distinguishing features with sufiti under and around the chairs in the foreground. Any bag or

C!a”.tY' Advances n h|gh_ def|n!t|0n sensor t_eghnology hav(?oject placed under one of these chairs would not be captured
s!gnlflcantly improved this cI_arlty. Still, obtaining a‘.Me the camera, despite being well within the camera’s field of
views of a scene, or “covering all angles,” necessitates th)i, 1t is also important to note that the image shown here is

deployment of many cameras, often on the order of hundr a raw image, and it has been processed to enhance local
or thousands in a single network. Such a large deployment Entrast

quires significant financial investment, and thus costetiffe
IP cameras are needed [11].

[imited dynamic range means that inexpensive cameras
cannot “see” everything within their field of view at the same
time. This hinders the identification of people or objects of
interest, as well as the general understanding of a sceé. Su
htscenario is illustrated in Fig. 1 (a), which shows a buddin
ntrance captured by a single, low dynamic range exposure.
S‘(’ﬁere, the difference in brightness between the outside and
inside of the building is so large that it is impossible for
e camera to adequately expose both regions simultaryeousl

Most HDR video methods include a way to obtain multiple
exposures of a scene, using specialized hardware or seftwar
This work has been supported by Huawei Technologies, Ca, Santa [10]. Hardware mpd|f|cat|oqs SUCh.as b?am spll_tters, mieltip
Clara, CA sensors, or spatially varying optical filters drive up costs



considerably. The desire to keep the cost of each camera low
thus motivates a software-based post-processing sojudi®n
described in Sec. Il. Transmission of an alternating exposu
video sequence is discussed in Sec. lll, followed by an
overview of HDR post-processing in Sec. IV. In Sec. V, we
introduce a novel bi-directional motion estimation metiioat

is crucial for the elimination of ghosting and the creatidn o
multiple exposures at each time instant. The results of two
sample frames are discussed in Sec. VI. Finally, Sec. VI
outlines some conclusions and future work.

II. HDR VIDEO CAPTURE

The benefits of increased dynamic range are shown in Fig.
. : . o (©) (d)

1 (b). Here, the pixel saturation surrounding the chairs in
the foreground is eliminated and new details are revealegly. 2. Dual-Exposure Control: (a) Short Exposure (b) Longdsure (c)
This image was created by alternating the camera’s expﬁjan_dard Auto-Exposure: Saturation causes a white sky lzaubw/s obscure
.Sl”e bet_Wee_n a s_hort and long exposure, and cornb_ining gsezgdg)eHsl?l\?/igvyé%uitr:]Er(;tlgslr;\ced colors and local contwigout saturation
information in adjacent frames. As opposed to still images,
video poses significant challenges due to motion, which will
cause ghosting in the HDR output if it is not compensated.
Furthermore, occlusions and other limits of frame regigina
ultimately mean that there is a tradeoff between temporal
fidelity and dynamic range, though filtering can reduce the Another advantage of an alternating-exposure technique
effect of artifacts [8]. concerns a main technological hurdle for many large-scale

Despite some loss in temporal fidelity, which is less crucigHrveillance camera networks: bandwidth. Cameras generat
for security and surveillance, there are a number of adgastaan enormous amount of data, and high dynamic range in-
to using an a|ternating exposure approach. First, it requircreases the number of bits per pixel. In order to view an HDR
no hardware modifications and can be performed on vid&tleo, this high bit-depth information must be mapped back
captured from very inexpensive cameras. IP cameras (camédp40 displayable range (tone-mapped) for low dynamic range
that transmit their data through a network connection to displays [9]. However, placing this processing at the camer
centralized server) can be easily programmed to capturesceitself will increase the costs and complexity at the dewdoek
with alternating exposures when needed. This data can aelsdifiting scalability. As such, the camera musansmit HDR
processed on an “as needed” basis at a central location witfprmation to a central server or “cloud.”
access to much larger computing resources and power. In thig\ state-of-the-art video camera with HDR sensors may
way, there is no additional cost at the device-end for HD&enerate up to 42 GB per minute of data, without compression
capability. [2]. For comparison, a high-definition 1080p camera with

Typical video cameras use a single exposure setting thastgndard dynamic range has a bandwidth of less than 11
adapted according to the statistics of each frame. Sinceythe GB per minute without compression. Advanced compression
namic range of the scene is usually much larger than thaeof #gchniques will reduce these numbers greatly, yet the HDR
camera, this auto-gain control a|gorithm attempts to mimem video will still represent a Significant increase in bandvid
the number of saturated pixels. In order to extend dynanfiémpared to low dynamic range.
range, we adapt two exposures (short and long) in real-timeHowever, data generated from a low dynamic range camera
as in [6]. The camera cycles between these two shutter speeaisturing alternating short and long exposures is still low
in alternating frames. Our goal here is to maximize the lordynamic range before it is processed. Due to the temporal
exposure and minimize the short exposure, thus maximizisgbsampling of the dynamic range, the bits per pixel is not
the dynamic range expansion, while maintaining enough ndnereased. Since there are large global brightness \amiti
saturated pixels to adequately register adjacent framesor® between adjacent frames, a compression scheme must encode
detailed description of our “dual-exposure” algorithm da the even and odd frames separately, which may decrease
found in [8]. Instead of minimizing the number of saturatedompression efficiency. Yet, an increased number of sa&drat
pixels in each frame, the number of saturated pixels is kiegpt gpixels within each stream means there is less high frequency
small percentage (typically between 20-30%). Figure 2 shownformation to encode. As such, an alternating exposure HDR
a sample long and short exposure, as well as correspondingthod represents a negligible change to the required band-
single exposure and HDR frames. width for transmission.

IIl. TRANSMISSION



IV. HDR POSTPROCESSING V. FRAME REGISTRATION

Given a sequence of alternating exposures provided by dn order to generate an HDR output with the same framerate
dual-exposure algorithm, the task is to utilize neighbgrinas an input sequence of alternating exposures, two exposure
frames to predict a second exposure for each time instamust be available at every time instant. This requires ateur
Ideally, this prediction should represemctly the same scene motion estimation (ME) to determine pixel correspondences
as the current frame, though this is hindered due to occletween adjacent frames. In addition, this process hasieniq
sions and non-overlapping regions. Still, HDR post-preites Challenges due to the severe illumination change between
provides very useful results. An overview of our processirfames and the resultant saturated pixels. The “HDR stighi
pipeline is found in Fig. 3. method in [6] used gradient-based optical flow ME, while the

method presented here uses a block-based approach, extendi
the work of [7].
The first step in our frame registration approach is to
= HDR Video calculate the forward and backward motion vectors for the
current frame with respect to the previous and next frames.
Since the brightness constancy assumption is violateddastw
' DR Postorocessing . CTTTTTTTTTmmmmmmmTmmmemeeS these frames, we must boost the short expostiseto match
the long exposure?;, using

Dual-Exposure ) Compression & N HDR
Video Capture Transmission Post-processing

Frame Generate HDR E Zy = gil(g(ZS) —In Aty + In Aty), (2)

Input =} e > Ra'\cllliggce | Tonemap |- Filtering —» Output

where At, and At; are the short and long exposure times,
' 1 andg! is the inverse camera response function modeled by
------------------------------------------------ an exponential curve. We then use the H.264 JM Reference
Fig. 3. High Dynamic Range Video Post-processing Overvigwnovel ~SOftware with Enhanced Predictive Zonal Search (EPZS), a
frame registration technique for alternating exposuresutiined in Sec. V. 16 x 16 block size, and Sum of Absolute Differences (SAD)
in both luma and chroma components to estimate the forward
The first step is adjacent frame registration, and details afid backward motion vector fields [1]. The two motion fields
our approach are found in Sec. V. Following registratiorre combined by selecting the motion vector with minimum
the current frame and prediction are combined to form SAD, and labels are stored to reference either the previous o
high dynamic range radiance map using the camera responggt frame for each block.
function [5], which can be estimated during the manufaoyri A. Determining Poorly Registered Pixels

stage. Given pixel valueg;; and shutter timeg\t;, one can ) ] ) )
Due to pixel saturation, some information needed for for-

recover a high dynamic rangadiance map using A Rt 4 .
ward/backward motion estimation is lost, producing acta

Zle w(Z;j)(9(Zij) — In At;) Therefore following forward/backwared ME, we next identif
In B = ZP w(Zi) ’ 1) poorly registered regions that must be improved udiig
J=1 E

directional motion estimation. We can locate registration errors
wherew(Z;;) is a weighting function; is the spatial index, on an RGB pixel-wise basis, and use these to asses registrati
Jj is the frame index, ang represents the log of the camerayuality for each block.
response curve [5]. Once the HDR radiance map is calculatedFirst, a pixel is designated as being “flipped” if it disobeys
it must be “tone mapped” back into displayable range. Whe brightness monotonicity assumption, i.e. it is brighte
use the method described in [9], which has global and lodal the shorter exposure than it is in the longer exposure.
normalization and uses a dodging and burning technique Secondly, we identify pixels where the predicteatiance
minimize halo effects. is poor. The absolute difference between the radiances give
The result is an HDR version of the current frame that mdyy the predicted pixel and the pixel in the current frame is
be vulnerable to blocking and other artifacts due to the-limcompared to a threshold (only for pixels that are non-s&tdra
tations of registration. Artifacts are addressed withitussted in both frames). Finally, using the camera response curve it
regions using a pixel-wise refinement step (see Sec. V-A), ais possible to determine the minimum brightness in a short
remaining artifacts may be filtered prior to output [7]. I,[8 exposure that will over-saturate in the long exposufe, (=
we describe a “High Dynamic Range (HDR) Filter” that cag = (g(Znaz) — In At; + In At,)), as well as the maximum
mitigate these artifacts for perceptually pleasing HDRewid brightness in the long exposure that will under-saturatién
without exact registration. This filter builds upon the i@l short exposure4. = ¢~ 1(g(Zmin) — In Aty + In Aty)). For
filter to smooth frames while maintaining important edgesstance, if the current frame is a long exposure, we cartéoca
Additionally, the filter strength locally adapts to correspling pixels that are saturated in the current frame whose pesdlict
motion vectors. Since regions with poor registration gather values are less than the threshdid.. Pixels are labeled as
correspond to faster motion, smoothing here can elimindtead” if any of these criteria are met in at least one color
noticeable artifacts without degradation in perceptualli(y  channel.



B. Determining Poorly Registered Blocks If it is saturated or too smooth, we cannot trust that a zero
In [7], blocks were labeled as “saturated” if the number gfotion vector is accurate. Still, diance based background
saturated pixels within the block was greater than 50% of tgbtraction model can help reduce ambiguity. This model
entire block. However, this method only identifies a subget §2n be calculated periodically or adaptively using one of
potentially mis-registered blocks, as blocks with littexture Several methods, such as the median of previous frames [4].
may be assigned incorrect motion vectors despite having gdgadlances prgdu:ted by non-saturated pixels in the current
matches. As such, we expand this “saturated” classificationrame and adjacent frames are compared to the model, and
include blocks in the current frame with standard deviatighiX€ls with a radiance difference below a threshold arel&be
less than a threshold, and blocks in the prediction frama w@S “background. _
standard deviation less than a threshold. The saturated pix At this stage, we also note blocks that have low zero motion
threshold is also adjusted to 60% of the entire block. SADs, but their co-located blocks do not have sufficient
All blocks labeled as “saturated” will be addressed usiri§xture, and neither the blocks in the current frame or co-
bi-directional motion estimation. Additionally, we idéfyta located blocks in the previous/next frames are labeled as
subset of blocks that may contain sufficient texture for imatc Packground.” These blocks are likely saturated in both the
ing, yet we cannot trust that their motion vectors repretieat long and short exposures. Since there is little informatan
true motion. These blocks, labeled as “unreliable”, tyjyjca motion estimation here, they are saved for last during later
appear in regions where objects are partially occludedirTh&t@ges so more neighboring information is available. Yet if
corresponding SAD cost may be quite low, so these blocks a#@ck does meet all criteria, we treat its corresponding RGB
not replaced if they are not classified as “saturated.” HaevPIoCk as a candidate, and check for *bad pixels” with respect
it is necessary to mark them as “unreliable” since the motid@ the RGB block in the current frame, as described in Sec.
vectors of reliable blocks will be utilized during bi-ditémal V-A. o _
prediction. A block is labeled “unreliable” if the number of The total number of bad pixels in the candidate RGB block,
bad pixels within the block is greater than a threshold (Séad IS used as an ado_lltlonal cost factor for the candidate zero
Sec. V-A), or the length of its motion vector is greater than &otion vector block with
chosen threshold. Very large MVs (greater than 60 pixel®at 3 COStotal = SAD + Mibad, 3)

fps) are most likely remnants of inaccurate motion estiomati . . . _
where ) is an empirically chosen constant. Finally, if gagt

C. Bi-directional Motion Estimation is below a chosen threshold, the current block is assigned
Once blocks are labeled as “saturated” or “unreliable”, tithe zero motion vector, the co-located block in the predicti
previous and next frames are prepared for block-based fsame is used as the final prediction, and the block is re-
directional motion estimation. Since this involves casting moved from the “saturated” or “unreliable” lists (if necasg).
the SAD and mean absolute difference (MAD) between blockairthermore, this block is assigned a new reference label to
in the previous and next frames, it is again imperative thaignify that both the previous and next frames are locallidva
these frames have the same global brightness. Despiteghafor prediction.
the same classification as either short or long exposuresBam 2) Non-zero Motion: Following zero motion prediction, a
they might have slightly different exposure times due toovel bi-directional motion search is used to improve the
the dynamic adjustment of shutter speed. Consequently, firedictions of any remaining “saturated” blocks. This e
frame with the shorter exposure time is boosted to match tisecompleted over multiple passes, and utilizes the medufids
brightness of the longer exposure time, as in forward/bacliw neighboring reliable motion vectors to initialize eachrsba
motion estimation. For a given “saturated” block, the first step is to count the
1) Zero Motion: In security and surveillance applicationsnumber of reliable neighbors (maximum of eight possible
the camera is often stationary or panning. A global pannimgighbors). If the number of good neighbors is greater than o
motion is captured well by a 2D homography, which may bequal to three and at least one of them shares a border with
estimated using block motion vectors. For stationary casjerthe current block, then the current block will be processed.
it is possible that much of the frame will have no motiorthere are not yet enough valid neighbors, then it is saved for
As such, the first step of bi-directional ME is to check evers later pass. The MVs of “unreliable” blocks (see Sec. V-B)
block in the frame for zero motion. We check every bloclare only used when there are not enough reliable neighbors to
instead of only blocks labeled as “saturated,” since whrethgrocess the entire frame.
or not a block has zero motion is an important distinction for When a block has a sufficient number of reliable neighbors,
HDR filtering [8]. we check the labels of these neighbors and count the number of
For a given block, we first calculate the SAD between cdplocks from the previous frame,,, and the number of blocks
located blocks in the previous and next frames and compdrem the next framen,,. Accordingly, we define the number of
it to a threshold. However, it is important to check whethereighbors that share a border with the current block,asand
the co-located block has sufficient texture for matchinghia t n;,, . These counts are used to determine the local prediction
prediction frame (either the previous or next frame, depand frame for the current block, by choosing the maximum of
on which provides the greatest dynamic range expansion). and n,, or n,, andn,, (whenn, = n,). If n;, and



np, are also equal, then the prediction frame is chosen by twhere \; and A\, are empirically chosen constants.
label assigned during forward/backward ME. Furthermdre, t It is important to note that even when a block is labeled as
predicted motion vector, Myeq, is the medoid of neighboring “saturated,” it is not certain that the motion vector assigjby
reliable blocks from this predicted frame only. Howevemjf forward/backward ME is incorrect. In fact, for some satedat
was equal tow,,, then MVyreq is the medoid of all neighboring blocks the bi-directional prediction will be worse. Fortiausce,
reliable blocks. if a block has a zero motion vector with respect to the previou
A Dbi-directional motion search is now centered abodtame and it is occluded in the next frame, the match for zero
P + MVpeq Wherep represents the indices of the currentotion directly between the previous and next frames will
block (fast motion search algorithms may be used for reduckd very poor. This means that bi-directional ME should only
complexity). The cost to be minimized includes two maiattempt to replace the forward/backward prediction. In this
factors: the mean absolute difference between blocks in tway, the bi-directional prediction will not be used when the
previous and next frames (MAJdirec) and the boundary associated cost is too high, or gggt > COStax. FOr most
match (MADpoung between the candidate blocks and thblocks, we set cogty to a fairly low value, and thus require
neighboring reliable blocks in the predicted frame. Theribu the search to find a good match. However, there are some
ary match algorithm is an important part of macro-blocklocks for which we raise castx to increase the likelihood
recovery techniques and error resiliency [3], and it worledl w that the new prediction will be used. These include blocks
under the assumption that video frames are smooth at blabkt have been labeled both “saturated” and “unreliabled’ a
boundaries. This assumption is not always valid, so it iglusblocks with a large difference between the MV assigned by
here in conjunction with the bidirectional MAD. Thmean forward/backward ME and the new candidate MV. If this
absolute difference is used instead of SAD since the numhiiference is extremely large, then it is likely that theginal
of reliable boundariesp;, varies from block to block. The MV is incorrect and thus appropriate to increase ggst
relative weighting between these costs is also varied, with Conversely, if this difference is very small, then it is like
that the original MV is correct and may perform better than
the new bi-directional prediction.
In this way, the importance of the boundary match increases
with the number of reliable boundaries. In our tests, we ehos
a to be .15. Figure 4 illustrates the boundary matching regionTo test our HDR post-processing methods, we captured
with a block size ofl6 x 16, as well the MV predicted by the sequences of alternating short and long exposures (30 fps an
medoid of neighboring reliable MVs. For increased fideldty, 640 x 480 resolution) using a Point Grey Research Firefly
smaller8 x 8 block size may also be used here. camera'. Furthermore, we often recorded several frames with
a single exposure level before the HDR mode was engaged,

cosiap = (1 — any)MAD pidirect + anyMAD poune~ (4)

VI. RESULTS
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to allow a comparison such as that in Fig. 1.

Sample input frames from two test videos are shown in
Fig. 5 (a) and (e). These frames are both short exposures,
exhibiting local motion across regions with a significantmu
ber of undersaturated pixels. In fact, much of the frames
are unusable for direct motion estimation. This is due to
the large brightness variations found in both scenes. In the
top sequence, the camera sits in the shade as cars drive by
under direct sunlight. Using a low dynamic range camera, it
is impossible to adequately expose the foreground and back-
ground simultaneously. Information that may prove impatrta
in a surveillance scenario, such as the car’s license plate o
distinguishing features, might ultimately be lost due twepi
saturation, even if the image resolution is sufficientlythig

Fig. 4. Bi-directional motion search: Boundary matchingl amotion vector

prediction (used to initialize the search) using reliabééghboring blocks. Sim“arly' the bright Sun"ght passing throuqh the windaws

Fig. 5 (e) makes it impossible to correctly expose both imdoo

In addition to costs from boundary matching and bidire@nd outdoors, a common problem near building entrances.
tional MAD, we can check pixels in each RGB candidate block The importance of the bi-directional motion estimation
with the corresponding RGB block in the current frame, dyocess (Sec. V-C) is illustrated in Fig. 5 (b)-(c) and €)=(
described in Sec. V-A. Finally, we add one additional castte First, Fig. 5 (b) and (f) show long exposure predictions of
as in [7] in order to promote motion vector field smoothnesie current frames created from adjacent framethout bi-

the distance between My and the candidate MV. The totaldirectional prediction. In Fig. 5 (b), registration is veppor
cost is now underneath the yellow car, a region where the input frame is

COStotal = COSlAD + A1Mbad + )\2||Mvpred - MVcand”a (5)

1For videos, please visit http:/vivonets.ece.ucsb.eB&RHtmI



(a) Original Frame (b) Initial Prediction (c) Predictionteaf Bi-directional ME (d) HDR Output

(e) Original Frame (f) Initial Prediction (9) Predictiontaf Bi-directional ME (h) HDR Output

Fig. 5. High Dynamic Range Video Results (Images best vieinecblor)

completely saturated. Similarly, the registration qyabtpoor with important activity, in order to create the highest dpyal

throughout the foreground in Fig. 5 (f). Furthermore, ther@ outputs when needed. Future work might extend the frame

visible artifacts across the walls in the baCkgrOUnd dudedart registration process to include moving cameras that eixhibi

minimal texture, which led to incorrect MVs. global motion, as well as study the effects of compression on
The predicted long exposure framagter bi-directional mo- output quality. Furthermore, a number of complexity redarct

tion estimation are shown in Fig. 5 (c) and (g). The regigirat techniques including parallel processing may be explored.
quality throughout the areas saturated in the current feame
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