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Abstract—We describe a new method for High Dynamic Range
(HDR) Video using alternating exposures that adds no additional
cost or bandwidth requirements to individual IP cameras, making
it suitable for large scale security and surveillance systems.
Sufficient dynamic range is crucial to the efficacy of a surveillance
system, as saturated pixels mean a camera can no longer “see”its
surrounding environment. High costs associated with hardware
for improved dynamic range make them unsuitable for very
large networks with hundreds or even thousands of cameras. We
outline a scalable software method that uses post-processing to
combine the information in adjacent frames of a video sequence
captured with alternating short and long exposures. In particular,
we introduce a novel bi-directional motion estimation module
that utilizes block-based motion vectors to register frames with
large differences in global brightness and fast local motion
within saturated regions. An HDR post-processing solutioncan
be deployed at a central location to process individual camera
streams on an “as needed” basis, removing additional costs at
the device-end. Furthermore, cameras continue to transmitlow
dynamic range frames, so there is no additional bandwidth
requirement. Results show significant gains in video quality
for inexpensive cameras when exposed to brightness variations
common in security and surveillance.

I. I NTRODUCTION

Surveillance and security cameras are vital for the protection
of borders, military bases, security checkpoints, and airports,
as well as countless businesses and homes. The usefulness ofa
camera for these tasks is strictly determined by video quality,
which is ultimately balanced against costs. In a surveillance
or security application, the pixel resolution, field of view, and
dynamic range are paramount. Frame rate and temporal fidelity
are useful for automated activity detection and object tracking,
yet they are secondary to the camera’s main objective to “see”
its surrounding environment.

A common surveillance task is the identification of people
of interest. Here, a camera needs an unobstructed view of the
person’s face or other distinguishing features with sufficient
clarity. Advances in high definition sensor technology have
significantly improved this clarity. Still, obtaining adequate
views of a scene, or “covering all angles,” necessitates the
deployment of many cameras, often on the order of hundreds
or thousands in a single network. Such a large deployment re-
quires significant financial investment, and thus cost-effective
IP cameras are needed [11].
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Camera dynamic range is equally important in this scenario.
Security and surveillance cameras are often placed outdoors
or near entrances to buildings, exposing them to extreme
variations in brightness. Most cameras capture 8 bits per color
channel (256 levels), whereas an outdoor sunlit scene might
require more than 10,000 levels. Auto-exposure algorithms
attempt to minimize the resultant pixel saturation, yet they
fail to correctly expose the entire frame. High dynamic range
(HDR) video aims to accurately record scenes with brightness
variations beyond the capabilities of a typical camera sensor.

(a) (b)

Fig. 1. (a) Low dynamic range frame captured by traditional auto-exposure
(b) High dynamic range (HDR) frame created using the alternating exposure
technique — note improved clarity and details in the foreground.

Limited dynamic range means that inexpensive cameras
cannot “see” everything within their field of view at the same
time. This hinders the identification of people or objects of
interest, as well as the general understanding of a scene. Such
a scenario is illustrated in Fig. 1 (a), which shows a building
entrance captured by a single, low dynamic range exposure.
Here, the difference in brightness between the outside and
inside of the building is so large that it is impossible for
the camera to adequately expose both regions simultaneously.
There is significant pixel saturation not only outside, but also
under and around the chairs in the foreground. Any bag or
object placed under one of these chairs would not be captured
by the camera, despite being well within the camera’s field of
view. It is also important to note that the image shown here is
not a raw image, and it has been processed to enhance local
contrast.

Most HDR video methods include a way to obtain multiple
exposures of a scene, using specialized hardware or software
[10]. Hardware modifications such as beam splitters, multiple
sensors, or spatially varying optical filters drive up costs



considerably. The desire to keep the cost of each camera low
thus motivates a software-based post-processing solution, as
described in Sec. II. Transmission of an alternating exposure
video sequence is discussed in Sec. III, followed by an
overview of HDR post-processing in Sec. IV. In Sec. V, we
introduce a novel bi-directional motion estimation methodthat
is crucial for the elimination of ghosting and the creation of
multiple exposures at each time instant. The results of two
sample frames are discussed in Sec. VI. Finally, Sec. VII
outlines some conclusions and future work.

II. HDR V IDEO CAPTURE

The benefits of increased dynamic range are shown in Fig.
1 (b). Here, the pixel saturation surrounding the chairs in
the foreground is eliminated and new details are revealed.
This image was created by alternating the camera’s expo-
sure between a short and long exposure, and combining the
information in adjacent frames. As opposed to still images,
video poses significant challenges due to motion, which will
cause ghosting in the HDR output if it is not compensated.
Furthermore, occlusions and other limits of frame registration
ultimately mean that there is a tradeoff between temporal
fidelity and dynamic range, though filtering can reduce the
effect of artifacts [8].

Despite some loss in temporal fidelity, which is less crucial
for security and surveillance, there are a number of advantages
to using an alternating exposure approach. First, it requires
no hardware modifications and can be performed on video
captured from very inexpensive cameras. IP cameras (cameras
that transmit their data through a network connection to a
centralized server) can be easily programmed to capture scenes
with alternating exposures when needed. This data can also be
processed on an “as needed” basis at a central location with
access to much larger computing resources and power. In this
way, there is no additional cost at the device-end for HDR
capability.

Typical video cameras use a single exposure setting that is
adapted according to the statistics of each frame. Since thedy-
namic range of the scene is usually much larger than that of the
camera, this auto-gain control algorithm attempts to minimize
the number of saturated pixels. In order to extend dynamic
range, we adapt two exposures (short and long) in real-time,
as in [6]. The camera cycles between these two shutter speeds
in alternating frames. Our goal here is to maximize the long
exposure and minimize the short exposure, thus maximizing
the dynamic range expansion, while maintaining enough non-
saturated pixels to adequately register adjacent frames. Amore
detailed description of our “dual-exposure” algorithm canbe
found in [8]. Instead of minimizing the number of saturated
pixels in each frame, the number of saturated pixels is kept at a
small percentage (typically between 20-30%). Figure 2 shows
a sample long and short exposure, as well as corresponding
single exposure and HDR frames.

(a) (b)

(c) (d)

Fig. 2. Dual-Exposure Control: (a) Short Exposure (b) Long Exposure (c)
Standard Auto-Exposure: Saturation causes a white sky and shadows obscure
details (d) HDR Output: Enhanced colors and local contrast,without saturation
(Images best viewed in color)

III. T RANSMISSION

Another advantage of an alternating-exposure technique
concerns a main technological hurdle for many large-scale
surveillance camera networks: bandwidth. Cameras generate
an enormous amount of data, and high dynamic range in-
creases the number of bits per pixel. In order to view an HDR
video, this high bit-depth information must be mapped back
into displayable range (tone-mapped) for low dynamic range
displays [9]. However, placing this processing at the camera
itself will increase the costs and complexity at the device-end,
limiting scalability. As such, the camera musttransmit HDR
information to a central server or “cloud.”

A state-of-the-art video camera with HDR sensors may
generate up to 42 GB per minute of data, without compression
[2]. For comparison, a high-definition 1080p camera with
standard dynamic range has a bandwidth of less than 11
GB per minute without compression. Advanced compression
techniques will reduce these numbers greatly, yet the HDR
video will still represent a significant increase in bandwidth
compared to low dynamic range.

However, data generated from a low dynamic range camera
capturing alternating short and long exposures is still low
dynamic range before it is processed. Due to the temporal
subsampling of the dynamic range, the bits per pixel is not
increased. Since there are large global brightness variations
between adjacent frames, a compression scheme must encode
the even and odd frames separately, which may decrease
compression efficiency. Yet, an increased number of saturated
pixels within each stream means there is less high frequency
information to encode. As such, an alternating exposure HDR
method represents a negligible change to the required band-
width for transmission.



IV. HDR POST-PROCESSING

Given a sequence of alternating exposures provided by a
dual-exposure algorithm, the task is to utilize neighboring
frames to predict a second exposure for each time instant.
Ideally, this prediction should representexactly the same scene
as the current frame, though this is hindered due to occlu-
sions and non-overlapping regions. Still, HDR post-processing
provides very useful results. An overview of our processing
pipeline is found in Fig. 3.
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Fig. 3. High Dynamic Range Video Post-processing Overview:A novel
frame registration technique for alternating exposures isoutlined in Sec. V..

The first step is adjacent frame registration, and details of
our approach are found in Sec. V. Following registration,
the current frame and prediction are combined to form a
high dynamic range radiance map using the camera response
function [5], which can be estimated during the manufacturing
stage. Given pixel valuesZij and shutter times∆tj , one can
recover a high dynamic rangeradiance map using

lnEi =

∑P

j=1
w(Zij)(g(Zij)− ln∆tj)
∑P

j=1
w(Zij)

, (1)

wherew(Zij) is a weighting function,i is the spatial index,
j is the frame index, andg represents the log of the camera
response curve [5]. Once the HDR radiance map is calculated,
it must be “tone mapped” back into displayable range. We
use the method described in [9], which has global and local
normalization and uses a dodging and burning technique to
minimize halo effects.

The result is an HDR version of the current frame that may
be vulnerable to blocking and other artifacts due to the limi-
tations of registration. Artifacts are addressed within saturated
regions using a pixel-wise refinement step (see Sec. V-A), and
remaining artifacts may be filtered prior to output [7]. In [8],
we describe a “High Dynamic Range (HDR) Filter” that can
mitigate these artifacts for perceptually pleasing HDR video
without exact registration. This filter builds upon the bilateral
filter to smooth frames while maintaining important edges.
Additionally, the filter strength locally adapts to corresponding
motion vectors. Since regions with poor registration generally
correspond to faster motion, smoothing here can eliminate
noticeable artifacts without degradation in perceptual quality.

V. FRAME REGISTRATION

In order to generate an HDR output with the same framerate
as an input sequence of alternating exposures, two exposures
must be available at every time instant. This requires accurate
motion estimation (ME) to determine pixel correspondences
between adjacent frames. In addition, this process has unique
challenges due to the severe illumination change between
frames and the resultant saturated pixels. The “HDR stitching”
method in [6] used gradient-based optical flow ME, while the
method presented here uses a block-based approach, extending
the work of [7].

The first step in our frame registration approach is to
calculate the forward and backward motion vectors for the
current frame with respect to the previous and next frames.
Since the brightness constancy assumption is violated between
these frames, we must boost the short exposure,Zs, to match
the long exposure,Zl, using

Ẑl = g−1(g(Zs)− ln∆ts + ln∆tl), (2)

where∆ts and ∆tl are the short and long exposure times,
andg−1 is the inverse camera response function modeled by
an exponential curve. We then use the H.264 JM Reference
software with Enhanced Predictive Zonal Search (EPZS), a
16× 16 block size, and Sum of Absolute Differences (SAD)
in both luma and chroma components to estimate the forward
and backward motion vector fields [1]. The two motion fields
are combined by selecting the motion vector with minimum
SAD, and labels are stored to reference either the previous or
next frame for each block.

A. Determining Poorly Registered Pixels

Due to pixel saturation, some information needed for for-
ward/backward motion estimation is lost, producing artifacts.
Therefore following forward/backwared ME, we next identify
poorly registered regions that must be improved usingbi-
directional motion estimation. We can locate registration errors
on an RGB pixel-wise basis, and use these to asses registration
quality for each block.

First, a pixel is designated as being “flipped” if it disobeys
the brightness monotonicity assumption, i.e. it is brighter
in the shorter exposure than it is in the longer exposure.
Secondly, we identify pixels where the predictedradiance
is poor. The absolute difference between the radiances given
by the predicted pixel and the pixel in the current frame is
compared to a threshold (only for pixels that are non-saturated
in both frames). Finally, using the camera response curve it
is possible to determine the minimum brightness in a short
exposure that will over-saturate in the long exposure (Zs∗ =
g−1(g(Zmax) − ln∆tl + ln∆ts)), as well as the maximum
brightness in the long exposure that will under-saturate inthe
short exposure (Zl∗ = g−1(g(Zmin) − ln∆ts + ln∆tl)). For
instance, if the current frame is a long exposure, we can locate
pixels that are saturated in the current frame whose predicted
values are less than the thresholdZs∗. Pixels are labeled as
“bad” if any of these criteria are met in at least one color
channel.



B. Determining Poorly Registered Blocks

In [7], blocks were labeled as “saturated” if the number of
saturated pixels within the block was greater than 50% of the
entire block. However, this method only identifies a subset of
potentially mis-registered blocks, as blocks with little texture
may be assigned incorrect motion vectors despite having good
matches. As such, we expand this “saturated” classificationto
include blocks in the current frame with standard deviation
less than a threshold, and blocks in the prediction frame with
standard deviation less than a threshold. The saturated pixel
threshold is also adjusted to 60% of the entire block.

All blocks labeled as “saturated” will be addressed using
bi-directional motion estimation. Additionally, we identify a
subset of blocks that may contain sufficient texture for match-
ing, yet we cannot trust that their motion vectors representthe
true motion. These blocks, labeled as “unreliable”, typically
appear in regions where objects are partially occluded. Their
corresponding SAD cost may be quite low, so these blocks are
not replaced if they are not classified as “saturated.” However,
it is necessary to mark them as “unreliable” since the motion
vectors of reliable blocks will be utilized during bi-directional
prediction. A block is labeled “unreliable” if the number of
bad pixels within the block is greater than a threshold (See
Sec. V-A), or the length of its motion vector is greater than a
chosen threshold. Very large MVs (greater than 60 pixels at 30
fps) are most likely remnants of inaccurate motion estimation.

C. Bi-directional Motion Estimation

Once blocks are labeled as “saturated” or “unreliable”, the
previous and next frames are prepared for block-based bi-
directional motion estimation. Since this involves calculating
the SAD and mean absolute difference (MAD) between blocks
in the previous and next frames, it is again imperative that
these frames have the same global brightness. Despite having
the same classification as either short or long exposure frames,
they might have slightly different exposure times due to
the dynamic adjustment of shutter speed. Consequently, the
frame with the shorter exposure time is boosted to match the
brightness of the longer exposure time, as in forward/backward
motion estimation.

1) Zero Motion: In security and surveillance applications,
the camera is often stationary or panning. A global panning
motion is captured well by a 2D homography, which may be
estimated using block motion vectors. For stationary cameras,
it is possible that much of the frame will have no motion.
As such, the first step of bi-directional ME is to check every
block in the frame for zero motion. We check every block,
instead of only blocks labeled as “saturated,” since whether
or not a block has zero motion is an important distinction for
HDR filtering [8].

For a given block, we first calculate the SAD between co-
located blocks in the previous and next frames and compare
it to a threshold. However, it is important to check whether
the co-located block has sufficient texture for matching in the
prediction frame (either the previous or next frame, depending
on which provides the greatest dynamic range expansion).

If it is saturated or too smooth, we cannot trust that a zero
motion vector is accurate. Still, aradiance based background
subtraction model can help reduce ambiguity. This model
can be calculated periodically or adaptively using one of
several methods, such as the median of previous frames [4].
Radiances predicted by non-saturated pixels in the current
frame and adjacent frames are compared to the model, and
pixels with a radiance difference below a threshold are labeled
as “background.”

At this stage, we also note blocks that have low zero motion
SADs, but their co-located blocks do not have sufficient
texture, and neither the blocks in the current frame or co-
located blocks in the previous/next frames are labeled as
“background.” These blocks are likely saturated in both the
long and short exposures. Since there is little informationfor
motion estimation here, they are saved for last during later
stages so more neighboring information is available. Yet ifa
block does meet all criteria, we treat its corresponding RGB
block as a candidate, and check for “bad pixels” with respect
to the RGB block in the current frame, as described in Sec.
V-A.

The total number of bad pixels in the candidate RGB block,
nbad, is used as an additional cost factor for the candidate zero
motion vector block with

costtotal = SAD+ λnbad, (3)

whereλ is an empirically chosen constant. Finally, if costtotal

is below a chosen threshold, the current block is assigned
the zero motion vector, the co-located block in the prediction
frame is used as the final prediction, and the block is re-
moved from the “saturated” or “unreliable” lists (if necessary).
Furthermore, this block is assigned a new reference label to
signify that both the previous and next frames are locally valid
for prediction.

2) Non-zero Motion: Following zero motion prediction, a
novel bi-directional motion search is used to improve the
predictions of any remaining “saturated” blocks. This process
is completed over multiple passes, and utilizes the medoidsof
neighboring reliable motion vectors to initialize each search.
For a given “saturated” block, the first step is to count the
number of reliable neighbors (maximum of eight possible
neighbors). If the number of good neighbors is greater than or
equal to three and at least one of them shares a border with
the current block, then the current block will be processed.If
there are not yet enough valid neighbors, then it is saved for
a later pass. The MVs of “unreliable” blocks (see Sec. V-B)
are only used when there are not enough reliable neighbors to
process the entire frame.

When a block has a sufficient number of reliable neighbors,
we check the labels of these neighbors and count the number of
blocks from the previous frame,np, and the number of blocks
from the next frame,nn. Accordingly, we define the number of
neighbors that share a border with the current block asnbp and
nbn . These counts are used to determine the local prediction
frame for the current block, by choosing the maximum of
np and nn, or nbp and nbn (when np = nn). If nbp and



nbn are also equal, then the prediction frame is chosen by the
label assigned during forward/backward ME. Furthermore, the
predicted motion vector, MVpred, is the medoid of neighboring
reliable blocks from this predicted frame only. However, ifnp

was equal tonn, then MVpred is the medoid of all neighboring
reliable blocks.

A bi-directional motion search is now centered about
p + MVpred, where p represents the indices of the current
block (fast motion search algorithms may be used for reduced
complexity). The cost to be minimized includes two main
factors: the mean absolute difference between blocks in the
previous and next frames (MADbidirect) and the boundary
match (MADbound) between the candidate blocks and the
neighboring reliable blocks in the predicted frame. The bound-
ary match algorithm is an important part of macro-block
recovery techniques and error resiliency [3], and it works well
under the assumption that video frames are smooth at block
boundaries. This assumption is not always valid, so it is used
here in conjunction with the bidirectional MAD. Themean
absolute difference is used instead of SAD since the number
of reliable boundaries,nb, varies from block to block. The
relative weighting between these costs is also varied, with

costMAD = (1− αnb)MADbidirect+ αnbMADbound. (4)

In this way, the importance of the boundary match increases
with the number of reliable boundaries. In our tests, we chose
α to be .15. Figure 4 illustrates the boundary matching region
with a block size of16× 16, as well the MV predicted by the
medoid of neighboring reliable MVs. For increased fidelity,a
smaller8× 8 block size may also be used here.
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Fig. 4. Bi-directional motion search: Boundary matching and motion vector
prediction (used to initialize the search) using reliable neighboring blocks.

In addition to costs from boundary matching and bidirec-
tional MAD, we can check pixels in each RGB candidate block
with the corresponding RGB block in the current frame, as
described in Sec. V-A. Finally, we add one additional cost term
as in [7] in order to promote motion vector field smoothness:
the distance between MVpred and the candidate MV. The total
cost is now

costtotal = costMAD + λ1nbad+ λ2||MVpred− MV cand||, (5)

whereλ1 andλ2 are empirically chosen constants.
It is important to note that even when a block is labeled as

“saturated,” it is not certain that the motion vector assigned by
forward/backward ME is incorrect. In fact, for some saturated
blocks the bi-directional prediction will be worse. For instance,
if a block has a zero motion vector with respect to the previous
frame and it is occluded in the next frame, the match for zero
motion directly between the previous and next frames will
be very poor. This means that bi-directional ME should only
attempt to replace the forward/backward prediction. In this
way, the bi-directional prediction will not be used when the
associated cost is too high, or costtotal > costmax. For most
blocks, we set costmax to a fairly low value, and thus require
the search to find a good match. However, there are some
blocks for which we raise costmax to increase the likelihood
that the new prediction will be used. These include blocks
that have been labeled both “saturated” and “unreliable,” and
blocks with a large difference between the MV assigned by
forward/backward ME and the new candidate MV. If this
difference is extremely large, then it is likely that the original
MV is incorrect and thus appropriate to increase costmax.
Conversely, if this difference is very small, then it is likely
that the original MV is correct and may perform better than
the new bi-directional prediction.

VI. RESULTS

To test our HDR post-processing methods, we captured
sequences of alternating short and long exposures (30 fps and
640 × 480 resolution) using a Point Grey Research Firefly
camera1. Furthermore, we often recorded several frames with
a single exposure level before the HDR mode was engaged,
to allow a comparison such as that in Fig. 1.

Sample input frames from two test videos are shown in
Fig. 5 (a) and (e). These frames are both short exposures,
exhibiting local motion across regions with a significant num-
ber of undersaturated pixels. In fact, much of the frames
are unusable for direct motion estimation. This is due to
the large brightness variations found in both scenes. In the
top sequence, the camera sits in the shade as cars drive by
under direct sunlight. Using a low dynamic range camera, it
is impossible to adequately expose the foreground and back-
ground simultaneously. Information that may prove important
in a surveillance scenario, such as the car’s license plate or
distinguishing features, might ultimately be lost due to pixel
saturation, even if the image resolution is sufficiently high.
Similarly, the bright sunlight passing through the windowsin
Fig. 5 (e) makes it impossible to correctly expose both indoors
and outdoors, a common problem near building entrances.

The importance of the bi-directional motion estimation
process (Sec. V-C) is illustrated in Fig. 5 (b)-(c) and (f)-(g).
First, Fig. 5 (b) and (f) show long exposure predictions of
the current frames created from adjacent frameswithout bi-
directional prediction. In Fig. 5 (b), registration is verypoor
underneath the yellow car, a region where the input frame is

1For videos, please visit http://vivonets.ece.ucsb.edu/HDR.html



(a) Original Frame (b) Initial Prediction (c) Prediction after Bi-directional ME (d) HDR Output

(e) Original Frame (f) Initial Prediction (g) Prediction after Bi-directional ME (h) HDR Output

Fig. 5. High Dynamic Range Video Results (Images best viewedin color)

completely saturated. Similarly, the registration quality is poor
throughout the foreground in Fig. 5 (f). Furthermore, thereare
visible artifacts across the walls in the background due to their
minimal texture, which led to incorrect MVs.

The predicted long exposure framesafter bi-directional mo-
tion estimation are shown in Fig. 5 (c) and (g). The registration
quality throughout the areas saturated in the current frames
is improved significantly. The zero-motion stage describedin
Sec. V-C1 has fixed the registration errors found across the
walls in Fig. 5 (f). Furthermore, the process has performed
well here despite the complex motion of the man walking
behind an occluding object. The final HDR outputs are shown
in Fig. 5 (d) and (g). Most of the frames are now exposed
correctly, with good color information. In fact, regions that
were undersaturated in the original frames now appear brighter
than in the predicted long exposures.

VII. C ONCLUSIONS& FUTURE WORK

High dynamic range video will be an important compo-
nent of future security and surveillance networks, even when
costs must be limited at each camera. We have outlined a
system that utilizes alternating exposures and post-processing
to expand the dynamic range of inexpensive camera sensors,
with negligible cost and bandwidth increases at the device-end.
Furthermore, we have proposed a new bi-directional motion
estimation algorithm that can register complex local motion
found within saturated image regions.

The post-processing described here achieves important gains
in dynamic range with respect to a single exposure. The trade-
off is some loss of temporal fidelity, yet this is secondary for
security and surveillance videos. Still, post-processingmight
ultimately be implemented in a scalable fashion. Significant
computational complexity might only be devoted to frames

with important activity, in order to create the highest quality

outputs when needed. Future work might extend the frame
registration process to include moving cameras that exhibit
global motion, as well as study the effects of compression on
output quality. Furthermore, a number of complexity reduction
techniques including parallel processing may be explored.

REFERENCES

[1] “H.264/AVC JM reference software,” http://iphome.hhi.de/suehring/tml/,
2008.

[2] A. Chalmers, “Surgeons, CCTV & TV football gain from new video
technology that banishes shadows and flare,” http://www2.warwick.ac.uk
/newsandevents/pressreleases/surgeonscctv tv/, Jan. 2011.

[3] Y. Chen, Y. Hu, O. Au, H. Li, and C. W. Chen, “Video error conceal-
ment using spatio-temporal boundary matching and partial differential
equation,”Multimedia, IEEE Transactions on, vol. 10, no. 1, pp. 2 –15,
jan. 2008.

[4] S.-C. S. Cheung and C. Kamath, “Robust techniques for background
subtraction in urban traffic video,” S. Panchanathan and B. Vasudev,
Eds., vol. 5308, no. 1. SPIE, 2004, pp. 881–892.

[5] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” inSIGGRAPH ’97. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1997, pp. 369–378.

[6] S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High dynamic
range video,” inACM SIGGRAPH, New York, NY, USA, 2003, pp.
319–325.

[7] S. Mangiat and J. Gibson, “High dynamic range video with ghost
removal,” in SPIE Optical Engineering & Applications, 2010.

[8] S. Mangiat and J. Gibson, “Spatially adaptive filtering for registration
artifact removal in hdr video,” inIEEE International Conference on
Image Processing (ICIP), sep. 2011.

[9] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic
tone reproduction for digital images,”ACM Transactions on Graphics,
vol. 21, no. 3, pp. 267–276, 2002.

[10] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec,High Dynamic
Range Imaging: Acquisition, Display, and Image-Based Lighting. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[11] M.-J. Yang, J. Y. Tham, D. Wu, and K. H. Goh, “Cost effective ip camera
for video surveillance,” inIndustrial Electronics and Applications, 2009.
ICIEA 2009. 4th IEEE Conference on, may 2009, pp. 2432 –2435.


