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ABSTRACT

Video communications over wireless networks suffer vari-
ous patterns of losses, including both random packet loss and
burst losses. Previous error resilient techniques simply con-
sider the average packet loss rate to enhance error robustness
for video transmission. However, loss patterns, specifically
burst losses, have great impact on video quality. In this pa-
per, we propose a method that can take account of both ran-
dom and burst losses to further improve the error resilience
of video coding. Our method estimates the end-to-end dis-
tortion based on recursive optimal per-pixel estimate (ROPE)
including both random and burst losses, and applies it for
rate-distortion (RD)-based optimal mode selection. We ap-
ply our method in two cases: For single description video
coding, we estimate the reconstructed pixel values for ran-
dom packet loss and burst losses, and calculate the overall
distortion. For multiple description video coding, we esti-
mate the end-to-end distortion for multiple state video coding
(MSVC) by considering the network conditions and multiple
state recovery to reduce the error propagation due to packet
loss in both descriptions for MSVC. Simulation results show
that our proposed method achieves better performance than
MSVC and original ROPE (only considering average packet
loss rate) over wireless networks with burst losses.

Index Terms— rate-distortion optimization, end-to-end
distortion, H.264, video coding, error resilience

1. INTRODUCTION

In wireless networks, video transmission may suffer from
packet loss due to link errors, node failures, route changes, in-
terference and fading in the wireless channel, etc. The packet
loss can seriously degrade the received video quality, espe-
cially due to the propagated errors in the motion-compensated
prediction loop. Therefore, it is challenging to provide error
resilient video coding for reliable video communications over
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such lossy networks. A number of techniques have been pro-
posed to increase the robustness of video communications to
packet loss, such as intra/inter mode selection [1–8], refer-
ence picture selection [9] [10], and multiple description video
coding [11].

Intra coding is an important technique for mitigating error
propagation due to packet loss and makes the video stream
more robust to errors. However, using more intra-coded mac-
roblocks (MBs) can greatly reduce the coding efficiency since
intra-coded MB generally requires more bits than inter-coded
MB. Therefore, to select the optimal intra/inter mode that can
achieve the best tradeoff between error robustness and coding
efficiency has become a widely addressed problem. There are
some simple intra updating methods such as refreshing con-
tiguous intra blocks periodically [1], or intra-coding blocks
randomly [2].

A more advanced category of intra refresh algorithms
estimates the end-to-end distortion due to both compres-
sion and packet loss, and incorporates mode selection with
rate-distortion (RD) optimization [2–8]. An early work of
RD-based mode selection method is proposed in [3], in which
the distortion is roughly estimated. In [2], the encoder con-
siders the effects of error concealment and intra-codes the
area that is severely affected by packet loss. However, the
error propagation beyond one frame is ignored during the es-
timation procedure. In [4], the authors further incorporate the
distortion due to error concealment of a current block with the
distortion due to error propagation from concealed blocks to
optimize mode selection. One drawback of the methods pro-
posed in [2–4] is that the estimated distortion at the encoder
is not very accurate. A more precise approach to estimate the
end-to-end distortion is proposed in [5]. The authors generate
K copies of the channel behavior at the encoder and calculate
the decoder reconstruction to estimate the expected end-to-
end distortion. This approach can very accurately estimate
the distortion if K is large enough. However, it has extremely
high computational complexity. In [6], an algorithm called
“Recursive Optimal Per-pixel Estimate” (ROPE) is proposed
to compute the distortion by recursively calculating the first
and second moments of each pixel due to compression, error



concealment, and error propagation. This algorithm provides
an accurate estimation of end-to-end distortion at the cost
of a modest increase in computational complexity. Since
the ROPE algorithm achieves substantial gains over compet-
ing methods, numerous extensive work have been proposed
based on the ROPE algorithm. For example, [7] estimates the
variance of expected distortion by calculating the first four
moments of each pixel and incorporates it to allocate channel
resources. In [8], the overall distortion is divided into several
separable distortion items to reduce the computing complex-
ity. In [12], the authors estimate the expected end-to-end
distortion to select between multiple description modes on a
frame basis.

All these techniques only consider a simple network con-
dition in which a average packet loss rate is assumed. How-
ever, [13] has shown that not only average packet loss rate but
also the specific pattern of the loss affects the expected distor-
tion; specifically, it proves that burst loss has a great impact
on the distortion. Because of the likelihood of both random
packet loss and burst losses in video communications over
wireless networks, we propose a method which take account
this more complicated network condition for optimal mode
selection to enhance the error resilience of video.

The method estimates the end-to-end distortion based on
the ROPE algorithm including the random and burst losses,
and uses RD optimization for optimal mode selection. The
method is applied in two cases. For single description video
coding, we estimate the reconstructed pixel value due to ran-
dom loss and burst losses, which results in a more precise
estimation for end-to-end distortion. When applying to RD-
based mode selection, this method helps to achieve the op-
timal tradeoff between error resilience and coding efficiency
under different random and burst loss rates, and outperforms
ROPE algorithm over lossy networks. Part of this work has
been presented in [14]. In this paper, we extend the study
in [14] by considering both bursty and random losses and
performing more comprehensive simulations. For multiple
description video coding, we estimate the expected end-to-
end distortion of multiple state video coding (MSVC) [15] for
optimal mode selection. MSVC transmits two descriptions
over two different paths and it is effective to combat burst
losses since the loss of consecutive frames in one description
can be well concealed by the frames in the other description.
However, it still suffers error propagation in both descriptions
when random packet loss happens. Therefore, we estimate the
reconstructed pixel value by considering the network condi-
tion, error propagation and multiple state recovery, and select
the mode that enhances the error robustness of MSVC. The
simulation results show that our proposed method can better
combat random and burst losses over the network than origi-
nal ROPE and MSVC.

The rest of the paper is organized as follows: Section
2 introduces some background information, including the
packet loss model, multiple state video coding (MSVC),

and the RD-based mode selection method. We present our
proposed method for two cases in Section 3. Section 4 intro-
duces the performance metrics to evaluate the video quality.
The proposed method is compared with ROPE and MSVC
under different loss patterns, and the simulation results are
discussed in Section 5. Section 6 analyzes the computation
complexity and the robustness to mismatch of our proposed
method. Finally, conclusions are drawn in Section 7.

2. BACKGROUND

In this section, we first introduce a packet loss model that
nicely characterizes both the random packet loss and burst
losses over the wireless network. We also introduce the mul-
tiple state video coding (MSVC) method proposed in [15] and
the RD-based mode selection method in H.264.

2.1. Packet Loss Model

In wireless networks, packet loss may occur due to numer-
ous reasons, including link/node failures, route changes, and
bit errors. These factors can cause both random packet loss
and burst losses over the network. To investigate the video
communications over such lossy networks, we first introduce
a simple packet loss model that captures packet loss features
in the network. As shown in Fig.1, this model considers both
the random packet loss and burst losses during the transmis-
sion and can be used to generate different loss patterns over
the wireless network.�
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Fig. 1. Packet Loss Model

In this model, time is divided into ∆t intervals and k
frames are transmitted during an interval. Each interval may
be either in a good state with probability (1−pb) or in a down
state with probability pb, which is independent and identically
distributed. The packets transmitted in a down state are all
lost while the packets transmitted in the good state may suffer
from a random packet loss. Therefore, the packet loss model
can be determined by three parameters: the burst loss rate pb,
the burst length k (frames), and the random packet loss rate
pr in a good state. And the total packet loss rate p in the
networks can be calculated by,

p = pb + (1− pb)pr = pb + pr − pbpr (1)



2.2. Multiple State Video Coding (MSVC)

MSVC proposed in [15] is an effective approach to enhance
error resilience for video transmission. In MSVC, the system
includes a multiple state video encoder/decoder and a path
diversity transmission system as shown in Fig. 2.
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Fig. 2. MSVC system architecture

At the encoder, the video sequence is first temporally
down-sampled into two sub-sequences, i.e. odd frames in
the original sequence are extracted as one description and
even frames as the other. The two descriptions are encoded
separately using a H.264 video encoder [16] and transmitted
over the networks in different paths. At the decoder, they
are decoded and interleaved to get the reconstructed video
sequence.

When one description experiences packet loss, the infor-
mation in the other description can be used to improve the
recovery of the corrupted video segment. This is referred
as multiple state recovery [15]. In [17], the performance of
MSVC is further improved by applying refined error con-
cealment methods on a MB basis. For MSVC, the even and
odd frames are transmitted in different paths, burst losses in
one description can be well concealed by frames in the other
description and cause less damage to the reconstructed video
than single description coding in which burst losses may
result in the loss of consecutive frames. However, random
packet loss may cost error propagation in both descriptions
and we try to alleviate the error propagation by applying
optimal mode selection for MSVC.

2.3. RD-based Mode Selection

Video standards such as H.264 provide different intra and in-
ter modes to encode a MB. In order to decide the best mode
for each MB, Lagrangian optimization technique is used to
minimize the distortion subject to a rate constraint [18]. In
other words, the coding mode that minimizes the Lagrangian
cost in the following equation is chosen to code the MB,

min
mode

(JMB) = min
mode

(DMB + λmodeRMB) (2)

where λmode is the Lagrangian multiplier for the mode deci-
sion given by Eq. (3) in H.264. RMB denotes the bits needed
for coding the MB in the specific mode, which includes the
bits for the MB header, the motion vector, the reference frame,

and the transformed coefficients. DMB represents the distor-
tion of the MB.

λmode = 0.85× 2(QP−12)/3 (3)

In the next section, we propose a method to estimate the
end-to-end distortion of each pixel at the encoder by consid-
ering both random and burst losses. The method is applied for
two cases. For single description coding, we estimate the con-
cealed pixel value under random packet loss and burst losses
to calculate the overall distortion more accurately. For multi-
ple description video coding with path diversity, we estimate
the end-to-end distortion for MSVC to improve its robustness
to packet loss.

3. PROPOSED METHOD

3.1. Preliminaries

Table 1 defines the notations used in the derivation of the dis-
tortion. The distortion of each MB is the sum of the distortion

Table 1. Notations
Definitions

di
n Distortion of pixel i in frame n

f i
n Original value of pixel i in frame n

f̂ i
n Encoder-reconstructed value of pixel i in frame n

f̃ i
n Decoder-reconstructed value of pixel i in frame n

(after error concealment)
r̂i
n Quantized residue of pixel i in frame n (Inter mode)

of the pixels in the MB,

DMB =
∑

i∈MB

di
n (4)

The expected end-to-end distortion for the pixel f i
n is given

by

di
n = E[(f i

n − f̃ i
n)2]

= (f i
n)2 − 2f i

nE[f̃ i
n] + E[(f̃ i

n)2] (5)

Notice that the value of f̃ i
n is a random variable at the

encoder. In order to estimate the expected distortion di
n at the

encoder, we need to calculate the first and second moments of
f̃ i

n for an intra or inter MB separately.

3.2. Extended ROPE with Burst Losses

In [6], the authors develop the ROPE algorithm to recursively
compute the first and second moments of f̃ i

n based on the
packet loss rate p and error concealment method. We notice
that the ROPE algorithm only considers a simple loss model,



in which each packet may be lost with a packet loss rate p.
While in wireless networks, the loss pattern is usually more
complicated. The video packets may suffer from burst losses
as well as random loss. Reference [13] shows that the loss
pattern has a significant impact on the distortion and burst
losses generally cause a larger distortion than isolated losses.
Therefore, we extend the ROPE algorithm with burst losses
to better estimate the decoder-reconstructed pixel value for
single description video coding.

When burst losses happen, the concealed pixel is further
away from the last correctly received frame and it generally
has a greater distortion. Therefore, we distinguish it from
the concealed pixel value due to random loss. By separately
estimating the concealed pixel value due to random loss and
burst losses, we can more accurately calculate the end-to-end
distortion at the encoder for optimal mode decision.

We assume that the temporal-copy error concealment is
used to recover the lost video segment. That is, a lost MB
is concealed by copying the previous correctly received MB
in the corresponding position. The packet loss model in Sec-
tion 2.1 is applied, in which three parameters need to be con-
sidered for the extended ROPE algorithm: burst loss rate pb,
burst length k (frames), and random packet loss rate pr. Us-
ing the notations in Table 1, we calculate the first and second
moments of f̃ i

n in intra and inter modes respectively.

3.2.1. Pixel in an intra-coded MB

According to the packet loss model, each packet may experi-
ence three network conditions:

1. The packet is correctly received with probability (1 −
pb)(1− pr). We thus have f̃ i

n = f̂ i
n.

2. The packet suffers burst losses with probability pb. This
means that k consecutive frames are lost during the
time interval ∆t. The lost MB is then concealed by
the co-located MB in the last correctly received frame.
That is f̃ i

n = f̃ i
n−(n mod k).

3. The packet encounters random loss with probability
(1 − pb)pr. Then the lost MB is recovered by copying
the co-located MB in the previous frame. Therefore,
we have f̃ i

n = f̃ i
n−1.

Based on the three cases, the first and second moments of
f̃ i

n in an intra-coded MB are calculated by,

E[f̃ i
n] = (1− pr)(1− pb)(f̂ i

n) + (1− pb)prE[f̃ i
n−1]

+pbE[f̃ i
n−(n mod k)] (6)

E[(f̃ i
n)2] = (1− pr)(1− pb)(f̂ i

n)2 + (1− pb)prE[(f̃ i
n−1)

2]

+pbE[(f̃ i
n−(n mod k))

2] (7)

3.2.2. Pixel in an inter-coded MB

When the pixel is inter-coded, there are also three cases to
estimate the decoder-reconstructed pixel value:

1. The packet is correctly received with probability (1 −
pb)(1 − pr). For an inter-coded pixel, we assume that
pixel i is predicted from pixel j in the previous frame
and the quantized residue is r̂i

n. Then the encoder re-
construction f̂ i

n is computed by adding the quantized
residue to the prediction, that is, f̂ i

n = r̂i
n + f̂ j

n−1.
Thus, the decoder-reconstructed pixel value is given by,
f̃ i

n = r̂i
n + f̃ j

n−1.

2. The packet suffers burst losses with probability pb.
Similar to the intra-coded pixel, the pixel is concealed
from the last correctly received frame and we have
f̃ i

n = f̃ i
n−(n mod k).

3. The packet encounters random loss with probability
(1−pb)pr and the pixel is concealed by the pixel in the
previous frame: f̃ i

n = ˜f i
n−1.

Finally, the first and second moments of f̃ i
n in an inter-coded

MB are given by:

E[f̃ i
n] = (1− pr)(1− pb)(r̂i

n + E[(f̃ j
n−1)])

+(1− pb)prE[f̃ i
n−1] + pbE[f̃ i

n−(n mod k)] (8)

E[(f̃ i
n)2] = (1− pr)(1− pb)E[(r̂i

n + f̃ j
n−1)

2] + (1− pb)pr

E[(f̃ i
n−1)

2] + pbE[(f̃ i
n−(n mod k))

2] (9)

Using Eqns. (6)-(9), we can recursively estimate the first
and second moments of f̃ i

n and calculate the overall end-to-
end distortion for each MB. By applying the RD-based mode
selection method in Section 2.3, the optimal mode that pro-
vides a good trade-off between coding efficiency and error
resilience for the specific random and burst loss rates is cho-
sen.

3.3. Optimal Mode Selection for MSVC

In Section 2.2, we know that MSVC transmits two inde-
pendently decodable descriptions over two different paths
to reduce the loss of consecutive frames. Burst losses in
one description only cause the loss of consecutive odd (even)
frames, which can be well concealed by the even (odd) frames
in the other description. This property makes MSVC robust
to burst losses. However, the distortion due to random loss
still propagates to future frames and multiple state recovery
may cause the error to propagate in both descriptions. There-
fore, MSVC is quite vulnerable to random loss. In order to
enhance the error resilience of MSVC under both random
loss and burst losses, we propose the optimal mode selection
for MSVC.



The idea is similar to the ROPE method, except that
MSVC uses multiple state recovery to conceal the error and
it needs to be considered during the estimation process. We
assume that the refined error concealment methods on a MB
basis are applied [17]. We estimate the first and second mo-
ments of f̃ i

n by considering the packet loss rate p, and the
multiple state recovery and calculate the expected end-to-end
distortion for each MB. When applying RD-based mode se-
lection, the proposed method can better recover from random
loss.

3.3.1. Pixel in an intra-coded MB

To compute the first and second moments of f̃ i
n for an Intra

MB, we need to consider the following scenarios:

1. The packet for f i
n is correctly received with probability

1− p and thus we have f̃ i
n = f̂ i

n.

2. The packet for f i
n is lost and the neighbor group of

blocks (GOB) is received with probability p(1 − p).
In this case, we estimate the motion vector of lost
pixel from one of the available neighbor MBs and use
motion-compensated concealment to recover the lost
pixel. We choose one frame as the reference from each
description and get two reconstructed values f̃ j1

n−1 and
f̃ j2

n−2. Then pixel f̃ i
n is recovered from f̃ j1

n−1 or f̃ j2
n−2

depending on which reconstructed value is closer to f̂ i
n,

i.e. f̃ i
n = f̃ jm

n−m, where m = arg min
x∈{1,2}

(f̃ jx

n−x − f̂ i
n)2.

3. The packet for f i
n and the neighbor GOB are both

lost with probability p2. Then either f̃ i
n−1 or f̃ i

n−2

is used to conceal f̃ i
n. Thus, f̃ i

n = f̃ i
n−k, where

k = arg min
x∈{1,2}

(f̃ i
n−x − f̂ i

n)2.

Based on the above cases, we can calculate the first and
second moments of f̃ i

n in an intra MB by Eqns. (10) and (11).

E[f̃ i
n] = (1− p)(f̂ i

n) + p(1− p)E[f̃ jm

n−m]

+p2E[f̃ i
n−k] (10)

E[(f̃ i
n)2] = (1− p)(f̂ i

n)2 + p(1− p)E[(f̃ jm

n−m)2]

+p2E[(f̃ i
n−k)2] (11)

where m = arg min
x∈{1,2}

(E[f̃ jx

n−x]− f̂ i
n)2,

k = arg min
x∈{1,2}

(E[f̃ i
n−x]− f̂ i

n)2

3.3.2. Pixel in an inter-coded MB

For MSVC, the odd frame is predicted from previous odd
frames and the even frame is predicted from previous even
frames. Therefore, the quantized residue r̂i

n = f̂ i
n − f̂ j

n−2

for MSVC, where pixel i in frame n is predicted from pixel j
in frame n − 2. Assume that jm(m = 1, 2) is the pixel cor-
responding to the estimated concealment motion vector for
pixel i in frame n − m. Then we can calculate the first and
second moments of f̃ i

n according to the three cases similar to
those in Section 3.3.1,

E[f̃ i
n] = (1− p)(r̂i

n + E[f̃ j
n−2])

+p(1− p)E[f̃ jm

n−m] + p2E[f̃ i
n−k] (12)

E[(f̃ i
n)2] = (1− p)E[(r̂i

n + f̃ j
n−2)

2]

+p(1− p)E[(f̃ jm

n−m)2] + p2E[(f̃ i
n−k)2](13)

where m = arg min
x∈{1,2}

(E[f̃ jx

n−x]− f̂ i
n)2,

k = arg min
x∈{1,2}

(E[f̃ i
n−x]− f̂ i

n)2

4. PERFORMANCE METRICS

In order to analyze the performance of the decoded video se-
quences, we use the average PSNR of all frames over all re-
alizations to evaluate the objective video quality. However,
due to non-linear behavior of human visual system, video se-
quences with close average PSNR may reveal different per-
ceptual video quality for human viewers. Therefore, we also
introduce PSNRr,f proposed in [19] to evaluate the percep-
tual video quality.

PSNRr,f is defined as the PSNR achieved by f% of
frames for the r% of realizations, which shows the video
quality guaranteed for r% of realizations among f% frames.
The definition of PSNRr,f can be written as

PSNRr,f = argx Preal(Pframe(PSNR > x) ≥ f) ≥ r)
(14)

Here, Pframe(PSNR > x) is the percentage of frames
that have PSNR higher than x in one realization and Preal(Ω)
is the percentage of realizations that satisfy the condition
Ω. For example, PSNRr=80%,f=90% = 35dB means that
there are 80% of the realizations having 90% of frames with
PSNR higher than 35 dB. We use PSNRr,f to evaluate the
perceptual video quality because of two findings [19, 20]:
(1) The bad-quality frames dominate users’ experience with
the video; (2) For PSNRs higher than a certain threshold, in-
creasing PSNR does not help to enhance the perceptual video
quality. We know that average PSNR treats every frame
equally and does not perfectly correlate with the perceptual
video quality because of the non-linear behavior of human
vision system. While PSNRr,f can capture the performance



loss due to damaged frames in a video sequence (f%). Fur-
thermore, PSNRr,f captures the performance experienced by
a user for multiple uses (r%) of the channel, or alternatively,
it can be interpreted as a performance indicator for multiple
users (r%) of the channel.

5. PERFORMANCE EVALUATION

5.1. Simulation Settings

We implement our proposed method by modifying H.264 ref-
erence software JM13.2. Currently, we use the temporal copy
method in the implementation. That is, the lost MB is con-
cealed by copying the co-located MB in the last correctly re-
ceived frame. For MSVC, to conceal a missing MB in frame
n, we examine the corresponding MB from the nearest frame
in each description (frame n−1 and frame n−2). The pixels
that minimizes the side match distortion are used for conceal-
ment. The following four approaches are implemented for
comparison:

• SDC ROPE: Single description coding with ROPE
proposed in reference [6], in which the total packet loss
rate is applied to estimate the distortion

• MSVC: Multiple state video coding introduced in Sec-
tion 2.2 with refined error concealment methods pro-
posed in [17]

• EROPE: Single description coding with extended
ROPE that accounts for both random and burst losses
proposed in Section 3.2

• MSVC OMS: The optimal mode selection approach
for MSVC proposed in Section 3.3, in which the packet
loss rate and multiple state recovery are considered to
estimate the distortion

Video sequences of 300 frames with QCIF format are
used in the simulation. The sequences are encoded at 30
fps and packetized to RTP format. The packet loss model in
Section 2.1 is used and we simulate each video sequence over
500 different realizations under the same network settings.

5.2. Performance Comparison

We first compare the performance of four approaches under
certain network condition (pr = 3%, pb = 3%, k = 5).
The average PSNRs for SDC ROPE, MSVC, EROPE, and
MSVC OMS are 31.09 dB, 29.16 dB, 31.84 dB, and 31.43 dB
respectively (Also shown in Fig. 3). We see that MSVC has
the worst average PSNR, which is 1.9 dB-2.7 dB lower than
other methods. And EROPE achieves a PSNR about 0.8 dB
higher than SDC ROPE and 0.4 dB higher than MSVC OMS.
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Fig. 3. Comparing PSNRr,f of SDC ROPE, MSVC,
EROPE, and MSVC OMS, Foreman sequence at bitrate 300
kbps, pr = 3%, pb = 3%, burstlength = 5

Based on the average PSNR, we see that EROPE and
MSVC OMS achieve better objective video quality. How-
ever, we see that average PSNRs of SDC ROPE, EROPE,
and MSVC OMS are all above 31 dB, which indicate good
video quality. In this case, the bad-quality frames may dom-
inate viewer’s experience and they are critical to decide the
perceptual video quality. Therefore, we further examine the
PSNRr,f of the four approaches to analyze their perceptual
performance.

Figure 3(a) shows PSNRr,f of SDC ROPE, MSVC,
EROPE, and MSVC OMS for Foreman sequence with fixed
r = 85%. In Fig. 3(a), we see that SDC ROPE and EROPE
have more number of low-quality frames than MSVC OMS
in 85% of the realizations. For example, as shown in Fig.
3(a), about 15% of frames in 85% of the realizations for



Table 2. Comparing performance of four approaches for Foreman sequence, pr = 3%, pb = 3%, k = 5

Objective video quality EROPE > MSVC OMS > SDC ROPE > MSVC

Number of bad-quality frames SDC ROPE > MSVC > EROPE > MSVC OMS

Quality guaranteed for multiple users MSVC OMS > EROPE > SDC ROPE ≈ MSVC

Table 3. Average PSNR and PSNRr=85%,f=85% for different video sequences at bitrate 100 kbps, pr = 3%, pb = 3%, k = 5

Average PSNR (dB) PSNRr=85%,f=85%
Video sequence

SDC ROPE MSVC EROPE MSVC OMS SDC ROPE MSVC EROPE MSVC OMS

Akiyo 37.77 36.00 38.02 37.26 33.12 33.12 33.66 34.25

Claire 37.11 35.89 37.57 37.27 30.91 33.05 32.13 35.08

News 31.09 29.97 31.33 30.71 26.43 26.65 27.33 27.72

Mother&Daughter 35.18 33.80 35.48 34.60 31.23 30.92 32.18 32.25

Salesman 33.58 32.67 33.64 33.15 30.29 30.63 30.97 31.49

SDC ROPE have a PSNR lower than 25 dB, while fewer than
5% of frames in 85% of the realizations for MSVC OMS
achieve a PSNR lower than 25 dB. Figure 3(a) demonstrates
that MSVC OMS achieve the best perceptual video quality
among the four approaches because it has fewest number of
bad-quality frames that dominate viewers’ experience.

Figure 3(b) plots PSNRr,f of SDC ROPE, MSVC,
EROPE and MSVC OMS with fixed f=85%. In the fig-
ure, we see that EROPE and MSVC OMS achieve higher
PSNRr,f=85% than SDC ROPE and MSVC under most val-
ues of r. This means that EROPE and MSVC OMS can
guarantee a higher PSNR than SDC ROPE and MSVC for
85% frames in almost all of the realizations. For example, the
PSNRs guaranteed for 85% of the frames in 85% of the real-
izations for SDC ROPE, MSVC, EROPE, and MSVC OMS
are 24.94 dB, 24.86 dB, 27.39 dB, and 28.34 dB respectively.
It indicates that EROPE and MSVC OMS provide better
video quality than SDC ROPE and MSVC for most of the
users over the network.

Table 2 summarizes the performance of four approaches
for Foreman sequence. Since EROPE better estimates the
end-to-end distortion by considering random packet loss and
burst losses, and provides a good trade-off between coding
efficiency and error resilience, it achieves the best objective
video quality among the four approaches. And MSVC OMS
combines the benefits of multiple description coding and op-
timal mode selection. Although the decreased correlation be-
tween the adjacent frames in each description reduces the
coding efficiency of MSVC OMS, the usage of multiple de-
scriptions and path diversity enhances its robustness to burst
losses while optimal mode selection helps MSVC OMS to
better combat random loss. Therefore, MSVC OMS guaran-
tees the smallest number of bad-quality frames for most of

the users, which indicates the best perceptual video quality
among the four approaches.

Table 3 shows the average PSNR and PSNRr=85%,f=85%

for different video sequences at bitrate 100 kbps under packet
loss parameters pr = 3%, pb = 3%, k = 5. When com-
pared the two single description coding approaches, we see
that our proposed EROPE approach outperforms SDC ROPE
in both average PSNR and PSNRr=85%,f=85%. For the
two multiple description coding approaches, we also see
that our MSVC OMS achieves higher average PSNR and
PSNRr=85%,f=85% than MSVC. These results show that
our two proposed approaches enhance the error resilience
of video and provide better objective and subjective video
quality than the original approaches, respectively.

When compared between our EROPE approach and our
MSVC OMS approach, we see that EROPE has higher av-
erage PSNR in the range of 0.3 - 0.8 dB and MSVC OMS
achieves the higher PSNRr=85%,f=85% from 0.1 dB and 2.9
dB. The results indicate that the two proposed approaches
both provide good error resilience to packet loss. The EROPE
approach is applied for single description video coding and
suitable for the single-path network. While MSVC OMS is
used for the multiple description video coding with path di-
versity.

5.3. Impact of Burst Loss Rate

In this section, we investigate the impact of burst loss rate
on different approaches when the random loss rate and
burst length are fixed. Figure 4 shows the performance of
SDC ROPE, MSVC, EROPE, and MSVC OMS with fixed
random loss rate 1% and burstlength 5 under different burst
loss rates.

In Fig. 4(a), we see that the average PSNRs of SDC ROPE
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Fig. 4. Comparing performance of SDC ROPE, MSVC, EROPE, and MSVC OMS under different burst loss rates, Foreman
sequence at bitrate 300 kbps, pr = 1%, burstlength = 5
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Fig. 5. Comparing SDC ROPE, MSVC, EROPE, and MSVC OMS under different random loss rates, Foreman sequence at
bitrate 300 kbps, pb = 1%, burstlength = 5

and MSVC constantly drop as the burst loss rate increases
while EROPE and MSVC OMS are more efficient to com-
bat burst losses. MSVC OMS works best when the burst
loss rate is high. In Fig. 4(b), we see that MSVC OMS
achieves a PSNRr=85%,f=85% by up to 5.5 dB higher than
ROPE, 4.5 dB higher than MSVC, and 2.2 dB higher than
EROPE, which shows that MSVC OMS provides the best
perceptual video quality among the four approaches for high
burst loss rate. According to Fig. 4, we see that our proposed
approaches achieve higher gains over previous approaches
when the burst loss rate is high. And MSVC OMS is the

most suitable approach for high burst loss rate case.

5.4. Impact of Random Loss Rate

Figure 5 shows the performance of SDC ROPE, MSVC,
EROPE, and MSVC OMS under different random loss rates
with fixed burst loss rate 1% and burstlength 5. In Fig.
5(a), we see that SDC ROPE, EROPE, and MSVC OMS
achieve close average PSNR for different random loss rates
and the average PSNR of MSVC drops badly as random loss
rate increases. This is because SDC ROPE, EROPE, and



MSVC OMS all include the distortion caused by random loss
in mode selection, which makes them robust to random loss.
While the error propagation due to random loss in both de-
scriptions of MSVC can greatly degrade its video quality. In
Fig. 5, we see that the performance gains achieved by EROPE
and MSVC OMS compared to ROPE do not vary much un-
der different random loss rates. These results are as expected
since the proposed methods are mainly designed to better
combat burst losses while maintain similar performance for
random loss.

6. DISCUSSION

6.1. Complexity Considerations

In Section 5, we show that our proposed approaches achieve
better performance than SDC ROPE and MSVC. In this
section, we compare the cost of computational complexity
and storage of our proposed approaches with ROPE. We
know that ROPE costs a modest increase in computational
complexity, which mostly introduces by calculating the two
moments of f̃ i

n for the cases of intra mode and inter mode, for
each pixel. When compared EROPE to ROPE, we know that
the concealed pixel value caused by burst losses is estimated
separately and it introduces 4 more addition/multiplication
operations for each pixel in an intra-coded/inter-coded MB.
Since the error concealment is the same regardless of the
coding mode of the MB, the total number of extra ad-
dition/multiplication operations is 6 for each pixel. For
MSVC OMS, the extra operations come from the selection of
multiple state recovery and it is the same for both intra-coded
MB and inter-coded MB. Therefore, MSVC OMS requires 8
more extra addition/multiplication operations for each pixel
than ROPE. Based on the above analysis, we see that the
computational complexity of EROPE and MSVC OMS is
in the same order of ROPE. Furthermore, all the additional
complexity occurs only at the encoder.

For storage complexity, we see that ROPE only needs to
store the two moments of each pixel in the previous frame,
while EROPE stores the two moments of previous k frames
and MSVC OMS stores the two moments of the previous two
frames. This extra storage cost introduced by EROPE and
MSVC OMS is negligible in most applications.

6.2. Mismatch of Network Conditions

Our approaches assume that the network conditions are
known at the encoder and are used as the coding parame-
ters. We need to analyze the situation that mismatch happens
between the assumed network condition and actual condition
in the network. There are two cases to be considered: either
the assumed packet loss rate is lower or higher than the actual
loss rate in the network. For the first case, the distortion
caused by packet loss for ROPE, EROPE, and MSVC OMS

is all underestimated; nevertheless, EROPE and MSVC OMS
are still more robust to packet loss than ROPE. For the sec-
ond case, the distortion is overestimated and it may introduce
unnecessary redundancy for error resilience. The worst mis-
match in this case is that the network is error-free and the
decoder reconstruction is equal to the encoder reconstruc-
tion. For example, when the assumed network condition
is pr = 3%, pb = 3%, k = 5, the average PSNRs at the
encoder for ROPE, MSVC, EROPE, and MSVC OMS are
34.93 dB, 35.10 dB, 34.28 dB, and 34.38 dB, respectively.
When no packet loss happens in the network, the average
PSNRs at the decoder are the same as above PSNRs, which
all represent quite good video quality. As we have known,
for PSNRs higher than a certain threshold, increasing PSNR
does not help to enhance the perceptual quality [19], thus the
cost of coding efficiency does not affect the perceptual video
quality much. And our proposed approaches start to achieve
gains when the video transmission suffers packet loss over
the network.

7. CONCLUSIONS

In this paper, we propose the error resilient video coding
method that enhances the robustness of video to both random
loss and burst losses over wireless networks. The method
estimates the end-to-end distortion under the specific random
and burst loss rates, and applies RD-based mode selection
to select the optimal coding mode. The proposed method
is applied for single description video coding and multiple
description video coding respectively. For single descrip-
tion video coding, we calculate the reconstructed pixel value
caused by random loss and burst losses, which results in a
more accurately estimation of distortion. The accuracy of the
estimation enhances its error robustness over lossy networks.
The simulation results show that it achieves better objective
and subjective video quality than ROPE for various loss pat-
terns. For multiple description video coding, we estimate the
distortion for MSVC and optimally select the coding mode
in both descriptions. Compared to MSVC, our approach al-
leviates the error propagation due to random loss in the two
descriptions of MSVC and achieves better performance than
MSVC under both random packet loss and burst losses. Note
that the complexity of our approaches, which is only incurred
at the encoder, is comparable to the ROPE approach.

We have shown that our EROPE approach outperforms
the original ROPE approach and our MSVC OMS approach
outperforms the MSVC approach under various loss pat-
terns. Compared between our proposed approaches, we
see that EROPE outperforms in objective video quality and
MSVC OMS achieves gains in perceptual video quality. Still,
the performance of the two approaches is very close. And
they are used for the single and multiple description coding
cases respectively.
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