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ABSTRACT

Video communications over wireless networks suffers various pat-
terns of losses, including burst losses that cause great degradation
in video quality. In this paper, we propose an algorithm based on
recursive optimal per-pixel estimate (ROPE) to accurately estimate
the overall distortion accounting for the loss pattern. The estimated
distortion is applied to the rate-distortion (RD)-based mode selection
to provide the optimal tradeoff between intra and inter coding. Sim-
ulation results show that in lossy networks, the proposed extended
ROPE algorithm achieves gains in average PSNR and PSNRr,f by
up to 0.8 dB and 3.6 dB respectively. This shows that the proposed
algorithm can enhance error resilience for video communications
over networks with burst losses.

Index Terms— video communications, error resilience, packet
loss, rate-distortion

1. INTRODUCTION

One challenging problem for video communications over wireless
networks is to provide error resilience for reliable communications.
A number of techniques have been proposed to enhance the error ro-
bustness of video communications over such lossy networks, such as
intra/inter mode selection [1], reference picture selection [2] [3], and
multiple description coding [4]. Some of these approaches achieve a
significant improvement using the rate-distortion (RD) based mode
selection methods. For these techniques, distortion caused by chan-
nel losses is considered as well as the distortion due to compression.

In reference [1], an algorithm called “Recursive Optimal Per-
pixel Estimate” (ROPE) is proposed to estimate the overall distor-
tion due to quantization, error propagation, and error concealment
and uses rate-distortion optimization to choose the best intra/inter
mode for each macroblock (MB). In the estimation model, they only
consider a simple packet loss pattern, that is, every packet can be
lost with a packet loss probability p and the loss or reception of each
packet is independent. However, references [5] and [6] have shown
that not only average packet loss rate but also the specific pattern
of the loss affects the expected distortion; specifically, [6] shows
that burst length has a great impact on the distortion. Because of
the likelihood of burst losses in video communications over wire-
less networks, we propose an extended ROPE algorithm that accu-
rately estimates the overall distortion under different loss patterns at
the encoder. It can be applied for RD-based optimal mode selection.
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We demonstrate that this extended ROPE method achieves better ob-
jective and subjective video quality than ROPE under different loss
patterns, which enhances error resilience for video communications
over wireless networks.

The paper is organized as follows: Section 2 introduces the
packet loss model and the RD-based optimal mode selection method.
Our extended ROPE algorithm for burst losses is proposed in Sec-
tion 3 and simulation results in Section 4 show the effectiveness of
the method.

2. BACKGROUND

In this section, we introduce the packet loss model for the wireless
networks and outline RD-based optimal mode selection method.

2.1. Packet Loss Model

In order to investigate the extended ROPE for burst losses, we first il-
lustrate the underlyling packet loss model as shown in Fig. 1. Time is�
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Fig. 1. Packet Loss Model

divided into ∆t intervals and each interval corresponds to k frames.
Each interval may be either in a good state with probability (1− pb)
or in a down state with probability pb, which is independent and
identically distributed. The packets transmitted in a down state are
all lost while the packets transmitted in the good state may suffer a
random packet loss. Therefore, the packet loss model can be deter-
mined by three parameters: the average burst loss rate pb, the burst
length k (frames), and the random packet loss rate in a good state pr .
The total packet loss rate p in the network can be calculated by:

p = pb + (1− pb)pr = pb + pr − pbpr (1)

2.2. RD-based Optimal Mode Selection

Video standards such as H.264 provide different Intra and Inter
modes to encode a MB. To decide the best mode for each MB, a La-



grangian optimization technique is used to minimize the distortion
subject to a rate constraint [7]. The optimal mode that minimizes the
Lagrangian cost in the following equation is chosen to code the MB,

min
mode

(JMB) = min
mode

(DMB + λRMB) (2)

where λ is the Lagrangian multiplier, RMB denotes the bits needed
for coding the MB in the specific mode, and DMB represents the
distortion of the MB. In the next section, we propose the extended
ROPE algorithm to estimate the decoder-reconstructed pixel value
with both random and burst losses, and use it to calculate the overall
distortion DMB for mode selection.

3. EXTENDED ROPE WITH BURST LOSSES

Reference [1] proposed the ROPE algorithm to estimate the overall
distortion of each pixel caused by quantization, error propagation,
and error concealment. Based on the notation in Table 1, the distor-

Table 1. Notations
Definitions

di
n Distortion of pixel i in frame n

f i
n Original value of pixel i in frame n

f̂ i
n Encoder-reconstructed value of pixel i in frame n

f̃ i
n Decoder-reconstructed value of pixel i in frame n

(after error concealment)
êi

n Quantized residue of pixel i in frame n (Inter)

tion of each MB can be calculated by

DMB =
∑

i∈MB

di
n =

∑
i∈MB

E[(f i
n − f̃ i

n)2]

=
∑

i∈MB

(
f i

n
2 − 2f i

nE[f̃ i
n] + E[f̃ i

n

2
]
)

(3)

The equations used to estimate the first and second moments of f̃ i
n

can be found in [1]. We notice that only independent packet loss rate
is considered when estimating the error propagation due to packet
loss in this formulation. However, [5] and [6] show that loss pat-
tern, especially burst loss, has a significant impact on the distortion,
which leads us to derive the extended ROPE algorithm with burst
losses. The extended ROPE algorithm can more accurately estimate
the reconstructed pixel value by considering the random and burst
loss separately.

As mentioned in Section 2.1, the burst loss rate pb, burst length
k (frames), and random packet loss rate pr are considered in the ex-
tended ROPE algorithm. Temporal-copy error concealment is used
to recover the lost video segment. Using the notations in Table 1, we
calculate the first and second moments of f̃ i

n in Intra or Inter mode
with burst losses as follows.

For an intra-coded MB,

E[f̃ i
n] = (1− pr)(1− pb)(f̂

i
n) + (1− pb)prE[f̃ i

n−1]

+pbE[f̃ i
n−(n mod k)] (4)

E[(f̃ i
n)2] = (1− pr)(1− pb)(f̂

i
n)2 + (1− pb)prE[(f̃ i

n−1)
2]

+pbE[(f̃ i
n−(n mod k))

2] (5)

For an inter-coded MB,

E[f̃ i
n] = (1− pr)(1− pb)(ê

i
n + E[(f̃ j

n−1)])

+(1− pb)prE[f̃ i
n−1] + pbE[f̃ i

n−(n mod k)] (6)

E[(f̃ i
n)2] = (1− pr)(1− pb)E[(êi

n + f̃ j
n−1)

2] + (1− pb)pr

E[(f̃ i
n−1)

2] + pbE[(f̃ i
n−(n mod k))

2] (7)

Equations (4)-(7) all contain three terms: The first term calcu-
lates the reconstructed value when the packet is correctly received.
The second term estimates the reconstructed pixel value for a ran-
dom packet loss. The last term estimates the reconstructed pixel
value under burst losses.

4. SIMULATION RESULTS

4.1. Simulation Settings

In this section, we examine the performance of our method under
burst losses. Based on the packet loss model in Section 2.1, we set
pr = 0 and run simulations under different burst loss rate pb and
burst length k (frames). In [8] [9], the common test conditions for
video transmission over wireless networks are discussed and for a
RTP size of 100 bytes, the common condition of packet loss rate is
in the range of 0%-20%. Reference [8] also mentions that packet loss
rates of 10% show annoying artifacts even when high error resilience
strength is used. Therefore, for our simulation, a burst loss rate in
the range of 1% -10% is chosen. We know that in wireless networks
the losses can be very bursty and can cause a loss of multiple frames
[5]. Here a burst length between 2-10 frames is chosen, since for a
burst length longer than 10 frames, the distortion can be very large
and we may reoptimize the network to avoid this kind of long burst
losses.

The original ROPE and extended ROPE methods are imple-
mented by modifying JM 13.2, which is the reference software for
H.264. The video sequence is encoded and packetized to RTP for-
mat. The video sequences used for simulations contain 300 frames
with a frame rate 30 fps and are in QCIF (176 × 144) format. For
original ROPE, only the total packet loss rate calculated by Eq.(1)
is considered at the encoder for the optimized mode selection, while
the extended ROPE considers all three parameters in the packet loss
model when encoding. A burst loss generator is used to generate
the burst loss pattern based on the model in Section 2.1 and drops
packets accordingly. For a specified burst loss rate and burst length,
500 realizations are simulated to show the performance of the two
methods.

In order to analyze the performance of the decoded video se-
quences, the average PSNR of all frames over all realizations is pre-
sented. Also a video quality indicator PSNRr,f proposed in [10] is
used. PSNRr,f can capture the performance loss due to damaged
frames in a single video sequence (f%) and also the specific quality
that a user would experience in multiple uses of the channel(r%). A
set of typical values for r and f is f = 90%, r = 85%.

4.2. Performance Evaluation

The Foreman sequence is encoded using ROPE and extended ROPE
at a fixed bitrate of 300 kbps under different burst loss rates and burst
lengths. The burst loss generator generates 500 realizations for each
set of burst loss rate and burst length. Table 2 and Table 3 show
the average PSNR of the Foreman sequence under different burst



loss rates and different burst lengths, respectively. The results in the
tables show that extended ROPE achieves better PSNR than ROPE
under different burst loss rates and patterns.

Table 2. Average PSNR (dB) of the Foreman sequence under differ-
ent burst loss rates at a burst length 5

Burst Loss Rate 1% 3% 5% 8% 10%
ROPE 34.53 32.81 31.82 30.90 30.29

Extended ROPE 34.62 33.40 32.44 31.58 31.09

Table 3. Average PSNR (dB) of the Foreman sequence under differ-
ent burst lengths at a burst loss rate 5%

Burst Length 2 4 6 8 10
ROPE 32.31 31.94 31.89 32.09 32.17

Extended ROPE 32.52 32.57 32.41 32.30 32.22

We introduce PSNRr,f to evaluate the video quality because
average PSNR treats all frames equally, which is not as effective as
PSNRr,f to represent the perceptual video quality [10]. PSNRr,f

is defined as the PSNR achieved by f% of the frames for r% of
the realizations, which shows the video quality guaranteed for r%
of realizations of f% frames. We are motivated to use PSNRr,f

because of two findings [10] [11]: (1) The bad-quality frames dom-
inate users’ experience with the video; (2) For PSNRs higher than
a certain threshold, increasing PSNR does not help to enhance the
perceptual quality.

Figure 2 and Figure 3 plot the PSNRr=85%,f=90% of ROPE and
extended ROPE for the Foreman sequence under different burst loss
rates and different burst lengths respectively. The figures show that
the PSNRs achieved by 90% of the frames in 85% of the realizations
for extended ROPE under different burst loss rates and patterns are
1.0-3.6 dB higher than original ROPE. The results show that even
though ROPE and extended ROPE both achieve high average PSNR
across all frames and realizations, extended ROPE implies much bet-
ter perceptual quality because a lower percentage of the frames expe-
riences extremely bad quality which can dominate human experience
with the video.
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Fig. 2. PSNRr=85%,f=90% versus burst loss rate at a fixed burst
length 5 for the Foreman sequence

We also examine the performance of four video sequences Car-
phone, Foreman, Mother-daughter, and Salesman under burst loss
rate 5% and burst length 5. The average PSNR and PSNRr=85%,f=90%

are presented in Table 4 on the next page.
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Fig. 3. PSNRr=85%,f=90% versus burst length at a fixed burst loss
rate 5% for the Foreman sequence

The results support the claim that extended ROPE outperforms
ROPE under burst losses. It is important to notice how different
PSNRr,f is than PSNR.

It is possible that the burst loss rate and burst length assumed
at the encoder are different from the actual burst loss rate and burst
length in the network. In order to investigate the robustness of ex-
tended ROPE, we assume that the burst loss rate and burst length
known at the encoder are 5% and 5 respectively, while the actual
burst loss rate in the network varies between 1% to 10% and the
actual burst length is in the range of 2-10.

Table 5 and Table 6 show the average PSNR of ROPE and ex-
tended ROPE under different burst loss rates and patterns when there
is a mismatch between the design network conditions and actual net-
work conditions. We see that extended ROPE has higher PSNR than
ROPE in most cases. Only when actual burst loss rate is 1%, ex-
tended ROPE achieves lower PSNR. The reason may be that ex-
tended ROPE wastes more bits to enhance the error robustness while
the actual burst loss rate is lower than the expected burst loss rate.

Table 5. Average PSNR (dB) of Foreman sequence under different
burst loss rates at a fixed burst length 5 for the Foreman sequence,
burst loss rate and burst length known at the encoder is 5% and 5

Burst Loss Rate 1% 3% 5% 8% 10%
ROPE 34.38 32.98 31.82 30.25 29.29

Extended ROPE 33.71 33.02 32.44 31.57 30.97

Table 6. Average PSNR (dB) of the Foreman sequence under differ-
ent burst lengths at a fixed burst loss rate 5% for foreman sequence,
burst loss rate and burst length known at the encoder is 5% and 5

Burst Length 2 4 6 8 10
ROPE 32.28 32.01 31.91 32.09 32.36

Extended ROPE 32.56 32.45 32.35 32.38 32.37

Figure 4 shows PSNRr=85%,f=90% versus actual burst loss
rate in the network when the burst loss rate known at the encoder
is fixed at 5% and Fig. 5 shows PSNRr=85%,f=90% versus actual
burst length in the network when the burst length known at the en-
coder is fixed at 5. In both figures, we see that extended ROPE has
higher PSNRr=85%,f=90% than ROPE in all cases, which shows
that extended ROPE provides better video quality than ROPE when
mismatch between expected and actual the network conditions oc-
curs.



Table 4. Average PSNR and PSNRr,f for different video sequences at a burst loss rate 5% and burst length 5
Carphone Foreman Mother-daughter Salesman

PSNRr,f (dB)
ROPE E-ROPE ROPE E-ROPE ROPE E-ROPE ROPE E-ROPE

Average PSNR 34.11 34.32 31.82 32.44 39.89 40.28 40.29 40.33
r = 85%, f = 90% 23.84 25.48 21.70 24.84 30.84 34.37 32.89 35.04

*E-ROPE denotes the extended ROPE method.
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Fig. 4. PSNRr=85%,f=90% versus burst loss rate in the network at
a fixed burst length 5 for the Foreman sequence, burst loss rate and
burst length known at the encoder is 5% and 5

2 3 4 5 6 7 8 9 10
19

20

21

22

23

24

25

26

27

28

Burst Length (Number of frames)

P
S

N
R

r=
85

%
,f=

90
%

 (
dB

)

 

 
ROPE
Extended ROPE

Fig. 5. PSNRr=85%,f=90% versus burst length in the network at a
fixed burst loss rate 5% for the Foreman sequence, burst loss rate and
burst length known at the encoder is 5% and 5

5. CONCLUSIONS

This paper proposes an extended ROPE algorithm that accurately
estimates the distortion due to various loss patterns and applies it
for optimal mode selection using rate-distortion optimization. We
compare extended ROPE to ROPE under different random and burst
loss patterns. The results show that extended ROPE achieves higher
average PSNR and PSNRr,f than ROPE. We also examine the per-
formance of extended ROPE and ROPE when there is a mismatch
between the assumed and actual network conditions. The results
verify the robustness of extended ROPE.
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