

This is better!

The brave new media: a plenoptic journey

Dan Lelescu Micron Technology Imaging Division R&D Lab

> UC Santa Barbara November 9, 2006

Introduction.

> Plenoptic acquisition.

Plenoptic signal processing (and computer vision, and graphics, and image/video coding, and...).

> Summary.

Time permitting: will show volumetric 3D displays, omnidirectional cameras, QuicktimeVR panoramas.

2

Early inquiries

Interest in surpassing the limitations of the human visual system (HVS)*.

Definition of "light field", 1939 [1]

The 50's 3D (red-green glasses): "Creature from the Black Lagoon" (1954)

*Some functions of HVS still cannot be rivaled by machine vision today: e.g., object discrimination/recognition, depth perception etc.

UCSB, Nov. 9, 2006

- > The light rays passing through a point $\{V_x, V_y, V_z\}$ in space form a pencil of rays.
- By taking a subset of these rays various types of views can be generated.

Plenoptic function

- The plenoptic function [Latin, plenum] was introduced formally in [2] in 1992.
 - Describes all light information collected at a point in space-time
- The plenoptic function is originally a 7D function, $f(V_x, V_y, V_z, \theta, \varphi, \lambda, t)$, where
 - Vx, Vy, Vz viewpoint coords.
 - θ, ϕ ray direction
 - λ wavelength
 - *t* time

By fixing various parameters in the plenoptic function, one obtains different, more restrictive representations.

Challenges: a first set

- Plenoptic image acquisition
 - Sensor design, calibration, syncronization
 - Space/time sampling
 - Acquisition speed
 - Huge amount of data generated
- Plenoptic processing present in the other topics
 - Mappings, plenoptic representation
 - Coding
- Plenoptic signal communication
 - Transport issues (e.g., error resilience) specific to this domain

Rendering and display •

- View reconstruction/rendering
- Display devices (to take advantage of new imaging capability)
- Comfort in visualization (nausea should not be part of experience).

UCSB, Nov. 9, 2006

How is all this different from Computer Graphics?

- Computer graphics (CG) is a mature field
 - Geometry modelling + texture mapping for rendering
 - Therein lies the problem for rendering natural objects/scenes
- CG techniques have limitations:
 - Natural and generic objects/scenes are extremely difficult to model
 - Even if possible, heavy computation cost
- Image-based rendering techniques (IBR) [3]
 - Attempt to use acquired images for rendering (although they can, and should, use geometry if available)
 - Elements of CG and IBR are often combined (but weight is heavily in favor of new IBR techniques)

From CG to IBR (and stations in-between)

> There is a continuum of methods spanning the IBR and CG fields

More geometry				
Rendering with no geometry ("true" IBR)		endering with plicit geometry	Rendering with explicit geometry	
Light Fields Concentric mosaics	Lumigraph View interpolation	View morphing	Layered-depth images	Texture-mapped models
Mosaics, cylindrical, sphe panoramas	rical			View-dependent texture

*adapted from [3]

- Note that stereo visualization can augment the figure above
 - e.g., one can generate stereo panoramas
 - there are specifics in terms of inducing stereopsis (for depth perception) 9

UCSB, Nov. 9, 2006

Light Fields

Light fields represent 4D parameterizations of the plenoptic function

- Light Fields[4] and Lumigraphs[5]: a ray is indexed by its intersection with two parallel planes. [Not the only approach!]
- Assumption of space free of occluders; six pairs of planes surrounding the convex hull of the object being imaged

> Arrays of cameras on a surface (or more restrictive arrangements).

Light Field rendering

Imaged views are trivially rendered from the ray database.

- > Novel, virtual views rendering consists of two main steps:
 - Determine the coordinates of rays in the desired virtual view (within the specific light field parameterization)
 - Interpolate "neighboring" rays from database to generate the new view

*from [6]

Light Field camera

- Plenoptic (or light field) cameras, use lenticular arrays on top of the sensor array.
 - Mimic a "camera array" on a small scale
 - Capable of 3D reconstruction, variable focus (after capture!)-very promising.

14

Light Field camera images

Example ([7]).

- Focus change is a re-sampling of the light field.
- Once picture at top is taken with a "normal" camera with fixed settings, you wouldn't be able to obtain the other image as a post-processing operation.

Omnidirectional acquisition

- For dynamic environments, "omniview" systems are needed (rotating cameras will not do).
- Catadioptric systems: lens+mirror elements
 - E.g., parabolic mirror and telecentric lens coupled with a video cam.

ParaMax Reality 360

Omnidirectional display

- Rendering from "omnidirectional" video camera (parabolic mirror+telecentric lens).
 - Generated arbitrary perspective views from video
 - Used either a monitor, or VR glasses + head tracker for "tele-presence" inside moving car

Omnidirectional video snapshot; captured using ParaMax Reality, a Sony video camera, a folded beach chair, and an Audi Quattro. (DoCoMo Labs, 2002)

Cylindrical panorama acquisition and display

Note the catadioptric system used [9].

View FullView FullView FullView FullView FullView FullView FullView FullV

Rotate off-center camera(s), e.g., [10].

UCSB, Nov. 9, 2006

LADAR 3D acquisition

- Camera uses pulsed laser [11].
- Per-pixel scene depth determined by difference in ToA (time of arrival of pulses).

"At video frame rates (30Hz) their solid-state flash LADAR system is able to simultaneously measure the distance to every point in the scene by recording the time-of-flight of a laser pulse. At full speed the camera collects 500,000 range points per second using a 1.57 um eye-safe laser that has been successfully tested at distances greater than 5km. The entire system is the size of a shoebox and weighs only 12 pounds. It uses less than 60 watts of power and can be controlled from a laptop." [11]

LADAR camera imagery

E.g., interlaced left/right views.

a)

b)

Plenoptic signal processing

Plenoptic sampling [1]

- Light Fields over-sample to counter aliasing.
 - More intensive acquisition
 - More storage
 - More redundancy (which can be exploited in coding)
- Lumigraphs use approximate geometry to improve rendering performance.
 - But geometry is hard to get for real scenes
- Fundamental problem: plenoptic sampling
 - Interplay of factors: scene depth and texture, number of sample images, rendering resolution
- How many samples and how much depth and texture information are needed to reconstruct an anti-aliased, continuous representation of the plenoptic function for a given resolution?

Plenoptic sampling [2]

- > Let l(u, v, s, t) Continous light field
 - p(u, v, s, t) Sampling function (e.g., rectangular sampling lattice)
 - r(u, v, s, t) Combined filtering and interpolation low-pass filter
 - i(u, v, s, t) Reconstructed light field
- In the spatial domain [12]

 $i(u, v, s, t) = r(u, v, s, t) \circledast [l(u, v, s, t) p(u, v, s, t)]$

For example, for a rectangular sampling lattice

$$l_s(u, v, s, t) = l(u, v, s, t) \sum_{n_1, n_2, k_1, k_2 \in \mathbb{Z}} \delta(u - n_1 \Delta u) \delta(v - n_2 \Delta v) \delta(s - k_1 \Delta s) \delta(t - k_2 \Delta t)$$

In the frequency domain,

$$L_s(\Omega_u, \Omega_v, \Omega_s, \Omega_t) = \sum_{m_1, m_2, l_1, l_2 \in \mathbb{Z}} L(\Omega_u - \frac{2\pi m_1}{\Delta u}, \Omega_v - \frac{2\pi m_2}{\Delta v}, \Omega_s - \frac{2\pi l_1}{\Delta s}, \Omega_u - \frac{2\pi l_2}{\Delta t})$$

Plenoptic sampling [3]

> Find r(u,v,s,t) for anti-aliased light field reconstruction.

- Minimum plenoptic sampling rate [12] is a function of:
 - Minimum and maximum depth in the scene (regardless of depth variation between bounds)
 - Highest frequency of the light field signal, determined by the scene texture distribution
 - Resolution of the sampling camera
 - Resolution of the rendering (rendering at higher resolution is wasteful)

View entropy

What constitutes a good view of a scene?

- No consensus, difficult to define
- Has something to do with the amount of information about the scene.
- Could use information theory concepts: "viewpoint entropy"
- > Possible basic elements of a viewpoint quality function:
 - Number of faces of objects seen
 - Size of projected area of faces

Shannon's entropy:
$$H(X) = -\sum_{i=1}^{n} p_i \log p_i$$
,

where X takes values from source alphabet {a1,a2,...,an}, and $p_i = P\{X = a_i\}$

Viewpoint entropy [13], for a sphere of directions centered at viewpoint:

$$I = -\sum_{i=1}^{n} \frac{A_i}{A_t} \log \frac{A_i}{A_t},$$

where n is the number of faces in the scene,

- A_i is the projected area of face *i* over the sphere
- A_t is the total area of the sphere, A_0 corresponds to background

UCSB, Nov. 9, 2006

Dynamically-reparameterized Light Fields [1]

- Interactive, variable depth-of-field and variable focus.
 - In original Light Field focal plane is fixed
 - A Lumigraph uses depth correction to improve rendering
- Parameterization [14] using a virtual camera surface and focal surface
 - Focal plane can be "swept" through the scene to bring in focus various portions → render by re-sampling the light field accordingly
 - Can have two or more distinct regions that are in focus simultaneously

UCSB, Nov. 9, 2006

Dynamically-reparameterized Light Fields [2]

Synthetic aperture

Light Field coding – Early methods

- > JPEG coding of each image in the image plane of a light field slab.
- Vector quantization + Lempel Ziv entropy coding (gzip) [4]
- Spatial Intra (I) and Predicted (P) pictures [15]
 - Disparity compensation

Light Field coding

Inter-view prediction structure based on AVC, using hierarchical B pictures.

* From Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, JVT-T208, July 2006 [16]

Light Field coding— Surface light field

- Discretize surface light field onto triangular mesh, decompose vertex-based light field using PCA [6].
 - Use active imaging method to get object geometry.

Light Field representation and coding

- Coding and rendering light fields:
 - Need for high compression suggests use of predictive coding (temporaland disparity-wise), thereby increasing inter-picture dependency
 - Need for random access suggests the use of intra-coding techniques
- Compromise by exploiting statistical inter-view redundancy: use Principal Component Analysis-based approaches [17].
 - Code subspace description (eigenimages) and transformed images.

Omnidirectional representation and coding

There are many types of omnidirectional acquisition systems

- Introduce an intermediate, universal representation to which all raw images can be mapped [18].
 - e.g., for facilitating coding using standard video codecs (MPEG)
- Universal format
 - Project to virtual sphere centered at SCOP of catadioptric system
 - Project onto faces of inscribed polyhedron: octahedron [3DAV[18]], dodecahedron [3DAV]
 - Project and pack polyhedron faces in the plane
- What is the best representation for coding such images (e.g., interesting questions on prediction in omnidirectional video)?

Interactive view generation (texture mapping)

3D reconstruction using omnidirectional images

Omnidirectional systems can be used for 3D reconstruction [19].
Advantage: generate 3D data for a wide field of view (FOV)--no need to do multiple depth maps merging as in narrow FOV (error prone).

At each camera location, capture a cylindrical panorama.
Use stereo to extract 3D structure of scene.

- Plenoptic acquisition, processing, coding, transmission, and display is a rich research area:
 - Inter-disciplinary: e.g., computer vision, optics, signal processing, computer graphics
 - Many challenges remain; new techniques await discovery
- Increased exposure in international standards (e.g., MPEG 3DAV, MVC), technical conferences.
- > Number of feasible applications is increasing:
 - 3DTV
 - Light Field photography (consumer ?)
 - Panoramic viewing
 - Tele-presence
 - Active cameras (e.g., LADAR).

> Participate!

Selected references [1]

- [1] A. Gershun, "The Light Field", *J. Math and Phys.,* vol.18, pp. 51-151, Moscow, 1939.
- [2] E.H. Adelson and J.R. Bergen, "The plenoptic function and the elements of early vision", *Computation Models of Visual Processing*, pp.3-20, MIT Press 1991.
- [3] H.-Y. Shum and S.B. Kang, "A review of image-based rendering techniques", *SPIE Visual Communications and Image Processing (VCIP)*, pp. 2-13, 2000.
- [4] M. Levoy and P. Hanrahan, "Light Field rendering", *Proc. ACM SIGGRAPH*, pp. 31-42, ACM Press, 1996.
- [5] S.J. Gortler et al., "The Lumigraph", *Proc. ACM SIGGRAPH*, pp.43-54, ACM Press, 1996.
- [6] W.-C. Chen, J.-Y. Bouguet, M.H. Chu, and R. Grzeszczuk, "Light Field mapping: efficient representation and hardware rendering of surface light fields", ACM SIGGRAPH 2002.
- [7] Stanford Computer Graphics Laboratory, Plenoptic camera.
- [8] E.H. Adelson and J.Y.A. Wang, "Single Lens Stereo with Plenoptic Camera",

PAMI, vol. 14, No. 2, pp. 99-106, 1992.

- [9] FullView cameras, Bell Labs, 1995.
- [10] H.-Y. Shum and L.-W. He, "Rendering with concentric mosaics", ACM SIGGRAPH 1999.

[11] LADAR camera, Advanced Scientific Concepts, advanced scientific concepts.com.

[12] J.-X. Chai, S.-C. Chan, H.-Y.Shum, and X. Tong, "Plenoptic sampling", 38

Conference on Computer Graphics and Interactive Techniques, 2000. UCSB, Nov. 9, 2006

Selected references [2]

- [13] P.-P. Vasquez, M. Feixas, M.Sbert, and W. Heidrich, "Viewpoint selection using viewpoint entropy", *Proceedings of the Vision, Modeling, and Visualization (VMV) Conference,* 2001.
- [14] A. Isaksen, L. McMillan, and S.J. Gortler, "Dynamically reparameterized light fields", ACM SIGGRAPH 2000, pp. 297-306, 2000.
- [15] M. Magnor and B. Girod, "Adaptive block-based light field coding." Proc. 3rd International Workshop on Synthetic and Natural Hybrid Coding and Three-Dimensional Imaging IWSNHC3DI '99, pp. 140-143, September 1999.
- [16] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, *Document JVT-T208*, July 2006.
- [17] D. Lelescu and F. Bossen, "Representation and coding of light field data", *Graphical Models*, vol. 66, pp. 203-225, July 2004.
- [18] D. Lelescu and F. Bossen, "Representation of panoramic and omnidirectional images", *Document M9273*, ISO/IEC JTC 1/SC 29/WG 11, Awaji, Japan, 2002.
- [19] S.B. Kang and R. Szeliski, "3-D Scene data recovery using omnidirectional multibaseline stereo", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996.
- [20] D. Lelescu and F. Bossen, "Additional requirements for 3D AV coding", *Document M8482*, ISO/IEC JTC 1/SC 29/WG 11, Klagenfurt, Austria, 2002?