
Adaptive Event Coverage Using High Power
Mobiles Over a Sensor Field

Jagadeesh Balam and Jerry D. Gibson
Department of Electrical and Computer Engineering

University Of California, Santa Barbara, California 93106-9560
Email: balam@engr.ucsb.edu and gibson@mat.ucsb.edu

Telephone: (805) 893–4404, Fax: (805) 805–2930

Abstract— We consider a high density network of low power,
stationary sensor nodes (motes) with an overlay of fewer, higher
power mobiles that respond to events sensed by the motes. The
motes sense the event(s) in progress and guide the much fewer,
more expensive mobiles to move to locations which provide best
coverage of the event. The mobiles use the distributed Lloyd
algorithm to optimally distribute the entire set of mobiles across
the event area. In the distributed Lloyd algorithm, mobiles
communicate only with their neighbor mobiles and do not have
available the locations of the remaining mobiles. We study the
effect of constraining the distance within which the motes can
communicate with the mobiles. Then we suggest an energy-
efficient model for communication between the mobiles and the
motes. We also investigate the effect of varying the mote density
on the coverage provided by the mobiles.

I. I NTRODUCTION

We consider a scenario where a large numbern of low
power stationary sensor nodes (henceforth referred to as
motes) are spread over a field for monitoring an event, say
a fire or a gas leak. There arem(<<n) mobile sensor nodes
in the field which can communicate with each other and also
collect data from the motes in the field. Each mobile node uses
the information provided by the motes, to move to a location
which gives bettercoverageof the event.

One of the significant features of low power stationary
motes is their low cost, which makes it feasible to have a
network with motes on the order of thousands. A high density
of motes guarantees high spatial resolution and fault tolerance,
but addition of more functionality to these motes might not be
feasible due to the low cost and low power requirements. Such
an added functionality could be provided using high power
mobile sensor nodes. However, the high cost of mobile sensor
nodes constrains the number of mobile sensors that can be
deployed in a sensor network. The quality-of-service / sensor-
coverage at a particular area in the field can be improved by
increasing the density of motes in that area, but when the area
of significance is changing with time, increasing the number
of motes is not a feasible solution. High power mobile sensors
can provide the flexibility to adapt to a changing environment
and provide better quality-of-service at the critical area. We
call this Adaptive Event Coverage.

Mobile robots equipped with sensors for physical phenom-
ena have exciting applications in wireless sensor networks.
Such robots in conjunction with the low-power motes could
make both detection and correction of a problem autonomous.

The mobiles could use the data collected from the motes to
track down a target or to determine the source of a problem.
In situations where accurate data is required from a specific
area in the field, mobile robots fitted with better sensors
and processors when compared with the motes could move
to the critical area for collection and also analysis of data.
Mobile robots fitted with cameras could also be used for visual
monitoring of a critical area.

In [1], it is proposed to use mobile robots as a gateway
to the low power sensor network. The robots can collect the
data, interpret and also take the necessary action instead of
waiting for the base station to do the processing. Not only
does such a setup decrease communication costs for the low-
power motes but additional tasks like repair or recalibration
of out-of-tolerance sensors can be carried out by the robots.
In [2], it is suggested to use powerful mobile agents to
perform critical network operations rather than burdening the
low power sensors with sophisticated processing.

In [3], the problem of optimizing the quality of ser-
vice/coverage provided by an adaptive sensor network in a dy-
namic environment was introduced. Coverage, here, is not the
coverage of area in the sensor field, but coverage of an event
in the sensor field. Each point in the sensor field is weighted
on the basis of the event distribution. The weight could be
a measure of the probability of the event at the point or a
measure of changes in physical phenomena due to the event.
Different kinds of coverage problems have been addressed
hitherto in the sensor network literature. In [4] algorithms to
reduce Worst case coverage (Maximal Breach Path) and best
case coverage(Maximal support path) are presented. In [5],
the authors talk about a network providing various degrees of
coverage while keeping the nodes connected. To distinguish
our problem from the other coverage problems, we call it an
Event-Coverageproblem.

A. Adaptive Event Coverage

The goal of theAdaptive Event Coverageproblem is to
provide coverage to events in a dynamic environment. The
mobile sensors (mobiles) move to locations which give best
coverage of the event. This problem was introduced by Cortés
et al. in [3]. They call this theoptimal sensor placement
problem. The sensing performance of a node at a pointq in
the field degrades with an increase in the distance between
the pointq and the nodepi. If this degradation is represented



by a non-decreasing functionf(||q − pi||) and the event
density function isφ, then, form mobile nodes, the coverage
problem can be expressed as the minimization of the following
locational optimization function,

J(P,W ) =
m∑

i=1

∫

Wi

f(||q − pi||)dφ(q) (1)

where the optimization functionJ depends on the positions
pi of the mobile nodes and the dominance regionWi assigned
to each node. The dominance region of a nodei is the region
where theith node’s sensing performance is better than that
of all other nodes. The optimization functionJ in Eq. (1)
is similar to average distortionD minimized in the classic
problem of the design of minimum-distortion vector quantizers
[6].

In vector quantization, vectors from k-dimensional Eu-
clidean space are mapped onto a finite set of code vectors.
The design problem is to find the set of code vectors and an
encoding rule that minimizes a chosen distortion measure. The
encoding rule specifies the partition of the k-dimensional space
that is assigned onto a code vector or the set of vectors that are
reproduced by the code vector. The code vectors in the vector
quantization design problem are analogous to the mobiles
in the coverage problem. In fact the locational optimization
problem addressed here is similar to a two dimensional vector
quantization problem. The problem of finding the locations
at which the mobiles give the best coverage of the area is
analogous to finding the points in a 2D space which represent
the other points in the space with minimum average distortion.

In the next section, we present an overview of the distributed
Lloyd algorithm presented in [3] in a scenario with motes. In
Section III, we discuss the effect of the number of motes on
the performance of the Lloyd algorithm. Section IV deals with
developing a communication model for the Lloyd algorithm,
followed by conclusions in Section V.

II. D ISTRIBUTED LLOYD ALGORITHM FOR ADAPTIVE

EVENT COVERAGE

The most popular algorithm for the design of vector quan-
tizers is the Lloyd algorithm [7]. This algorithm successively
applies the two necessary optimality conditions on the parti-
tions (Nearest Neighbor condition) and the positions (Centroid
condition) of the code vectors to monotonically reduce the
average distortion in successive iterations . For squared error
distortion, it is observed that the optimal partitions are Voronoi
partitions of the code vectors , i.e., all the vectors nearest, in
a squared distance sense, to a code vector are assigned to it.

The Lloyd algorithm can easily be applied to find the
optimal positions for mobiles at which the mobiles provide
best coverage of an event. Cortés et al [3] present a distributed
Lloyd algorithm for coverage control of mobile sensing net-
works. The algorithm is designed to beadaptiveto changing
environments and sensing tasks,distributed, i.e., each mobile
needs to know only its neighbors’ locations, andasynchronous,
so global synchronization is not required. The algorithm is also
guaranteed to converge to centroidal Voronoi configurations

like the generalized Lloyd algorithm. Each mobile first finds
its Voronoi partition with only the knowledge of the locations
of neighbor mobiles. In the next step each mobile moves
towards the centroid of its Voronoi partition calculated using
the density functionφ.

The problem here is that we do not usually have the
knowledge of the distribution of the event, a priori. Also,
we want the mobiles to track transient events in real time.
Hence, we use the suggested setup, wherein a large number
of motes are distributed over the sensor field to monitor
for events. The low-cost motes spread over the field send
samples of some measure of the event, like temperature when
there is a fire, to the mobiles.The mobiles use this data to
calculate the centroid of their respective Voronoi cell. For
example, for an event like a fire, the mobiles need to move in
the direction of increasing temperature gradient. Suppose the
motes provide the temperature at their location to the mobiles.
The mobiles can use the temperature readings of the motes
within their Voronoi partition to calculate the centroid. Ifti is
the temperature recorded by motei located at (xi,yi) then

Centroid(k) =
∑

(ti ∗ (xi, yi))∑
(ti)

∀(xi, yi) ∈ Vk

whereVk is the Voronoi partition of mobilek. The key steps
in the distributed Lloyd algorithm are summarized in Fig. 1.

Each mobilei at time ti:
1) Identifies the neighbor mobiles,
2) Computes the Voronoi polygon
3) Broadcasts a request message to all the motes within
the Voronoi Polygon to send their data

4) Calculates the centroid (weighted mean) of the polygon
using the datadk sent by the motes at (xk,yk) as

Centroid(i) =
∑

(dk∗(xk,yk))∑
(dk)

∀(xk, yk) ∈ Vi

5) Move with a velocityu that is proportional to the
distance between the current location and the centroid,
towards the centroid for a timeδt

Fig. 1. Distributed Lloyd Algorithm
We earlier mentioned an interesting application of mobile

sensor nodes from [1], where the mobiles are used as a
gateway to the low power sensor network. Here we consider
sensor networks with a hierarchal networking architecture
consisting of the stationary low power nodes (motes) and high
power mobiles. Each mobile acts as a cluster node for all the
motes within its Voronoi partition. Consider the problem of
minimizing the energy spent by the motes in communicating
information to the mobiles. If we assume that the energy spent
in communication increases with the squared distance between
the mote and the mobile, then we can use the distributed Lloyd
algorithm to find the locations of the mobiles which minimize
this energy. In [8], an energy efficient clustering algorithm is
presented, wherein each non-clusterhead node joins its nearest
cluster-head, forming a Voronoi tessellation. Each mobile finds
the locations of motes within its Voronoi partition and moves
towards the mean (all the motes have equal weights attached)
of the locations. All the motes join the nearest mobile forming



(a) Initial Positions (b) σ2 = 104

(c) σ2 = 104/2 (d) σ2 = 104/3

Fig. 2. Distributed Lloyd algorithm applied on 25 mobiles over a sensor field
500 m wide with a Gaussian event distribution given byφ = exp(−((x −
300)2 + (y − 300)2)/σ2)

a Voronoi tessellation. Such a setup can also made adaptive
to node (both mote and mobile) failures.

III. D ENSITY OF THE SENSOR FIELD

One of the significant factors that would affect the per-
formance of the Lloyd algorithm in the current scenario is
how accurately the mobiles know the density functionφ. The
motes provide spatial samples of the continuous functionφ to
the mobiles. Forφ to be accurately represented, the number
of motes should tend towards infinity, pushing the spatial
resolution to zero. An increase in the number of motes also
increases the communication and computation overheads of
the network. The time taken to converge would also increase
with an increase in the number of motes.

We simulated a square sensor field 500 m per side with
25 mobiles distributed over the field. In our simulations, we
investigated the effect of the number of motes on performance
of the Lloyd algorithm. Our implementation of the Lloyd
algorithm is distributed but not asynchronous. Each mobile
calculates its Voronoi partition from the knowledge of the po-
sitions of only its neighbors but all the mobiles move towards
the centroids at the same time. The setup was simulated using
Mathematica. The initial positions of the mobiles also affect
the local optimum reached. Each simulation was run with the
mobiles at the same initial positions. The centers of square
partitions of the field were chosen as the initial positions of
the mobiles. Figure 2 shows initial positions of the mobiles
(2(a)) and final positions (2(b) 2(c) 2(d)) of the mobiles for
three different variances of the event distribution.

The performance of the algorithm was evaluated using the
value of the optimization functionJ . Continuous integrals

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of motes

J 
/ J

10
00

σ 2 = 104

σ 2 = 104/2
σ 2 = 104/3

Fig. 3. J/J1000 vs Number of motes. As the density of motes increases the
value ofJ decreases

of the density functionφ over the Voronoi partitions of the
mobiles (

∫
Wi

f(||q − pi||)dφ(q) ), at their final positions,
were used in evaluatingJ . The event distribution is given by
a Gaussian function with the mean inside the sensor field.
The algorithm was run for different numbers of motes and
different variances of the event distribution till the mobiles
converged to a local minimum. Figure 3 shows that the value
of J decreases, i.e., the coverage provided by the mobiles
improves with an increase in the number of motes. To make
the results for different variances comparable we dividedJ
obtained by the value ofJ obtained for 1000 motes in each
case.J was averaged over 10 runs for each mote density.
Observe that there is no significant change inJ for an increase
in the number of motes over 7500 whenσ2 = 104/2 and there
is no significant improvement in coverage for more when the
number of motes are increased above 5000 for a variance of
104.

As expected the coverage provided by the mobiles improves
with an increase in the number of motes. Since the increased
density is only helpful to guide the mobiles when an event
is detected, when there is no event we can use a mechanism
where only a fraction of the motes in the field are kept awake.
A scheduling scheme such as the one presented in [9] can
be used for the motes. In this scheme redundant motes are
switched off keeping the coverage provided by the motes
constant. Herecoverageis the area covered by the motes in
the sensor field.

A. The problem of local optima

The Lloyd algorithm can get stuck in a local optimum
rather than reaching a global optimum. Here we investigate the
algorithm performance when compared to a global optimum.
Gray and Karnin [10] demonstrate the existence of multiple
local optima. In [11], Zeger et. al. present techniques to find
a globally optimal vector quantizer. The idea is to introduce
randomness into an otherwise deterministic Lloyd algorithm.
We compare the performance of the Lloyd algorithm in the
current scenario with a solution found using one of the tech-
niques suggested in [11]. We chose the reduced complexity
SR algorithm for decoder perturbation (SR-D algorithm) to
find a global optimum because it can be implemented as a
distributed algorithm. In this algorithm a random noise is



TABLE I

COMPARISON OFLOCAL OPTIMA AND GLOBAL OPTIMA FOR DIFFERENT

MOTE DISTRIBUTIONS

J
Seed Lloyd alg. SR-D alg. % diff.

1 2278.15 2236.43 1.831
2 2284.35 2273.40 0.48
3 2421.21 2252.46 6.9

added to each mobile’s location at the end of each iteration.
The mobiles calculate their Voronoi polygons and then find the
centroid of their partition. Then a random noise of decreasing
variance is added to each of the centroids. This algorithm can
be adapted to a distributed case by simply allowing the mobiles
to add a random noise to their centroid calculations starting
from the time when the event was first detected. Each mobile
needs to add a noise of decreasing variance to the calculated
centroid for a certain number of steps and then follow the
Lloyd algorithm without adding the noise till they converge.

We chooseσx as 100 and the number of iterations for which
SR is applied,I, is 100. The value ofp was chosen to be 3 as
suggested in [11]. The number of motes was fixed at 3000 and
the event distribution is Gaussian in a square field of width
500 m. The variance of Gaussian random noise added to the
centroids at themth iteration is given by

Tm = σ2
x(1− m

I
)p (2)

The experiment was run for different mote locations and the
value ofJ achieved by the Lloyd algorithm was compared to
the value ofJ at the global optimum found using the SR-D
algorithm. Observe from Table I the difference between the
local optimum and the global optimum. The largest difference
seen here is 6.9%. It is difficult to comment on how significant
this difference is in a real scenario but the overhead due to
the SR-D algorithm is significantly larger. On an average the
Lloyd algorithm took 45 iterations to converge whereas the
SR-D algorithm took 100 iterations.

IV. COMMUNICATION MODEL FOR THE DISTRIBUTED

LLOYD ALGORITHM

In the present scenario, motes need to communicate with
the mobile at each iteration of the Lloyd algorithm. Com-
munication is a costly affair for the low-power motes. We
try to find a suitable communication model for the motes so
as to minimize the energy spent in communication with the
mobiles. We assume that the mobiles have dual communication
capabilities, i.e., they use a different mechanism like 802.11
for communication with the other mobiles and radio waves
for communication with the motes. We assume that all the
mobiles and the stationary motes have knowledge of their
global positions. We are not concerned about energy spent by
the mobiles since we assume them to be high-power nodes.

The mobiles communicate with their neighbors to construct
the Voronoi diagram. The mobiles then broadcast a request
signal to the motes to send the data. Mobiles need data from
only the motes within their Voronoi cell. Motes could receive
multiple requests from different mobiles but a mote has to
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Fig. 4. Energy expended by the radio

send data to the mobile whose Voronoi cell it belongs to. We
neglect this energy loss in the motes due to receipt of multiple
request signals. Such a loss may be avoided if the mobiles
broadcast the signals using directional antennas and limit the
communication to the motes within their respective Voronoi
polygons.

To avoid communication from the motes outside the Voronoi
polygon of the mobile, a mobile could broadcast the vertices
of its Voronoi polygon. Each mote runs a simple check to
find whether it lies inside the Voronoi polygon and responds
only if it belongs to the Voronoi polygon. Algorithms exist to
check whether a point lies inside a polygon. These algorithms
are simpler and faster for convex polygons, which the Voronoi
polygons are.

As the Lloyd algorithm converges, the mobiles are con-
centrated in the area where the event density is high. The
Voronoi polygons of the mobiles that are away from the mean
of the event distribution increase in area. At each iteration,
the number of motes within the Voronoi polygons of these
mobiles increases. Communication with all the motes within
the polygon is not only time consuming but also energy
draining. We limit communication to the motes lying within
a distance from the mobile. We examine how the coverage
provided changes when such a limitation is imposed.

We consider two models of communication for the motes.
The motes can either use a multi-hop network to communicate
with the mobile or directly communicate with the mobile.
Min and Chandrakasan study energy-efficient communica-
tion for sensor networks in [12]. They state that for sensor
networks with communication over small distances direct
communication of the information consumes less energy than
communication using multiple hops. According to the radio
model suggested in [13], the transmitter or receiver circuitry
consumesEelec=50 nJ/bit and the transmit amplifier needs
εamp=100 pJ/bit/m2. The radio expends ETx(k, d) to transmit
a k-bit message over a distanced and ERx(k) to receive a
k-bit message, where

ETx(k, d) = ETx−elec ∗ k + εTx−amp ∗ k ∗ d2

ERx = Eelec ∗ k

Figure 4 shows the energy expended per bit for varyingd
andh. Observe that for smaller distances (<50m) single-hop



TABLE II

AVERAGE ENERGY EXPENDED FORCOMMUNICATION

Communication Model Energy(µJ/bit/mote) J
Multi-hop (all motes) 41.65 2229.28

Multi-hop (motes within 50 m) 5.51 2480.15
Direct (motes within 50 m) 2.502 2480.15

or direct communication is least energy consuming. A similar
evaluation has been done in [12] for anr3 path loss model,
where for the parameters assumed, direct communication (sin-
gle hop) is observed to be energy-efficient ford < 30 meters.
Also when overheads due to protocol and MAC layer are
considered, multi-hop communication consumes significantly
more energy than simple direct communication.

A significant amount of energy is expended in the startup
of radio in a mote. Startup of the radio module usually takes
hundreds(more than 400) of microseconds and is much larger
than the time taken for transmitting small packets of data.
The motes in our problem transmit their location and the
corresponding sensor reading to the mobile. If we assume each
value takes 4 bytes, then the mote transmits 96 bits (8 bytes for
location, 4 bytes for the reading) for each request. At 1 Mbps
rate, each transmission takes 96 microseconds. For multiple
hops, nodes at each hop expend energy for startup of the
radio. So more energy is spent in the startup of intermediate
nodes than the energy spent for transmission of the data. Direct
communication of information is more energy-efficient than
multi-hop communication for transmitting small payloads.
But as noted earlier, the Voronoi polygons of mobiles can
be large and the motes which lie at the extremes may not
be able to directly communicate with the mobile. We next
investigate how the Lloyd algorithm performs when we limit
communication to the motes located within a certain distance
from the mobile.

A. Experiments and Results

We simulated a square sensor field 500 m wide with a
high density of motes distributed over the field. We carried
out our simulations for 5000 motes (1 per 50 m2) uniformly
distributed over the field to guide 25 mobiles in covering
the event. The distribution of the event is represented by a
Gaussian function (φ = exp(−((x−300)2+(y−300)2))). We
investigate the performance of the distributed Lloyd algorithm
when the mobiles talk to the motes which are within a distance
of 50 m from them. We also demonstrate the difference in
energy expended when direct communication is used instead
of a multi-hop network through these simulations.

The following are the assumptions made for the multi-
hop communication. 1) The motes broadcast their message
over a communication ranger of 10 m. 2) We assume that
a minimum-hop routing protocol exists and the message is
transmitted with a minimum number hops. So the minimum
number of hops required to communicate a message to the
mobile that is at a distanced is given bydd

r e. 3) We neglect
the MAC and network layer overheads. 4) The environment
is error-free, so that the motes do not retransmit any data. For
direct communication we assume an r2 path loss.

The results averaged over five runs are presented in Table II.
Observe that the loss in J is only about 11% when the mobiles
communicate with only the motes within a 50 m radius and the
energy consumed is reduced by 94%. Also observe that energy
consumption is reduced by more than 50% when the mobiles
directly communicate with the motes within 50 m from them
instead of using a multi-hop network for communication.

V. CONCLUSIONS

We proposed a mechanism to provide adaptive event cov-
erage in a sensor field using high power mobile sensor nodes
and a large number of low power stationary sensor nodes. We
use the distributed Lloyd algorithm presented in [3] to control
the movement of the mobiles. We observed that there is no
significant decrease inJ when the mote density is increased
above 1 per 50 m2 when σ = 100. Observe that the gain
achieved by increasing the number of motes is higher when the
variance of the event distribution is lower. If we can estimate
the lower bound on the variance of the event, then for a
given number of mobiles we can find the number of motes
that give close to optimum results for any event in the field.
We studied the behavior of the algorithm when the mobiles
communicate with only the motes within a certain distance
from them and observed that the coverage provided is not
affected significantly because of this limitation. Thus, we can
use a direct communication model between the motes and
the mobiles that saves a significant amount of energy when
compared to multi-hop communication.
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