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Abstract—We consider strategies for the lossy transmission of
a zero-mean memoryless Gaussian source over a 2 × 2 Rayleigh
faded MIMO system with transmitter side information. The
first strategy uses repetition coding, where the same symbol is
duplicated over the two transmit antennas in two consecutive
time slots. The second strategy employs the Alamouti scheme,
while the third strategy is based on spatial multiplexing. A
mean squared error distortion measure is assumed. Since this
distortion results, at the receiver, in a continuous random
variable, both its expected value and statistical distribution
are used for evaluating the performance of each strategy. It is
shown that the spatial multiplexing strategy achieves the lowest
expected distortion and also that the utilization of the Alamouti
strategy brings only a slight decrease in performance, but has
the advantage of a lower realization complexity. Considering
the statistical distributions of distortion, it is observed that
increasing the signal-to-noise ratio results in higher probabilities
of achieving the expected distortion and to less variable values
of distortion. Due to the characteristics of the respective distri-
butions of distortion, both Alamouti and spatial multiplexing
strategies are capable of achieving low distortion with high
probability while, at the same probability, the repetition strategy
achieves significantly higher distortion.

I. INTRODUCTION

We consider the lossy transmission of Gaussian source in-

formation over 2×2 Multiple-Input Multiple-Output (MIMO)

systems with Rayleigh fading, assuming the knowledge of

Channel State Information (CSI) at the transmitter (also

called transmitter side information).

In [1], we considered Gaussian source transmission over

2 × 2 MIMO systems when CSI is not available at the

transmitter. In that work, we developed and compared several

strategies based on techniques such as Repetition coding

(REP) [2], Time Sharing (TS), the Alamouti scheme (ALM)

[3] and Spatial Multiplexing (SM) [2]. Since the transmitter

did not have knowledge of CSI, it did not know the instan-

taneous rate supported by the channel, i.e. its capacity, and

hence it was not able to adapt the source coding rate to the

channel conditions to ensure the decoding of the information
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at the receiver with an arbitrarily small probability of error.

Instead, it encoded and transmitted the source information

using a constant rate, chosen to achieve a selected outage

probability. When the channel did not support the transmis-

sion of information at the chosen coding rate, data were lost

and the system experienced an outage.

In this work, we want to reconsider these strategies under

the assumption of perfect CSI at the transmitter. In this

case, the transmitter is able to follow the (slow) variations

of the channel by adapting the source coding rate to the

instantaneous capacity, since it is aware of the particular

channel realization in every time instant. In such a situation

there is no notion of outage since the source rate is always

adapted to achieve the instantaneous channel capacity [4].

This observation has a direct impact on the usefulness of

the TS strategies in our current scenario. These strategies

employ a time sharing approach to the two transmit antennas

to create two independent channels from our MIMO system

[1]. These independent channels are then used to provide path

diversity by transmitting multiple description representations

of the source over them. However, path diversity is useful

only if the channels are unreliable, i.e. if they suffer outages,

which is not our current case. For this reason, in this paper

we do not consider the TS strategies.

The remaining three strategies are described in the follow-

ing sections, where we also evaluate their performance using

a mean squared error fidelity criterion. In particular, since

the distortion at the receiver results in a continuous random

variable, we consider both its expected value and statistical

distribution, i.e. its cumulative distribution function (CDF).

Finally, a comparison of the performance of the different

strategies is made.

II. STRATEGIES FOR INFORMATION TRANSMISSION

A. Assumptions and preliminaries

We consider a 2 × 2 MIMO system characterized by the

channel matrix H , having the form

H =

(
h11 h12

h21 h22

)
Each entry hij of the channel matrix H represents the gain

of the channel between the j-th transmit antenna and i-th
receive antenna. Each one of these channels is assumed to
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be independent, random and with very slow Rayleigh fading.

The hij are then i.i.d. complex Gaussian random variables

with zero mean and unit variance, which remain constant over

the transmission of a large number of symbols. Under these

assumptions, the squared magnitude of the channel gains can

be written as

|hij |2 =
1

2
xij , i, j = 1, 2 (1)

where the xij are random variables distributed according to a

chi-square distribution with 2 degrees of freedom [5]. Perfect

CSI, i.e. knowledge of H , is assumed to be available both at

transmitter and receiver.

The total transmitted power by the transmit antennas is

constrained to Pt. If both transmit antennas are transmitting

simultaneously, each antenna will transmit with equal power

Pt/2, while, if only one antenna is transmitting at a given

time, it can make use of full transmit power Pt. The noise

at the receiver is i.i.d. AWGN noise, with the same average

power N at each receive antenna.

The source is assumed to be a zero-mean memoryless

Gaussian source with a variance normalized to unity. The

system bandwidth is also assumed to be normalized to unity.

In the following, we will denote with γ̄ the ratio Pt/N
and with Γ(z) and Γ(a, z), respectively, the gamma function

and the incomplete gamma function [5]. We will also denote

with χ2
k the distribution of a chi-square random variable with

k degrees of freedom, with F
(k)
χ (z) its CDF and with

f (k)
χ (z) =

1

Γ
(

k
2

)
2

k
2

z
k−2

2 e−
z
2

its probability density function (PDF) [5].

B. REP strategy

In the REP strategy [1], the same symbol S1 is transmitted

over the two transmit antennas in two consecutive time slots.

In each time slot, only one of the two transmit antennas is

used for transmission, while the other antenna is turned off.

Thus, in the first time slot S1 is transmitted on the first

transmit antenna and it is observed by the receiver through the

two channels with gains h11 and h21. In the second time slot,

the same symbol S1 is transmitted on the second transmit

antenna and it is observed by the receiver through the two

channels with gains h12 and h22. A Maximal Ratio Combiner

(MRC) [6] is then used at the receiver to optimally combine

the four signals received by the two receive antennas in the

two different time slots.

Since transmitter side information does not increase capac-

ity unless transmitted power is also adapted [6], the capacity

of this strategy in a given fading realization has the same

expression as in [1] and results

C =
1

2
log2

(
1 + γ̄

2∑
i,j=1

|hij |2
)

which can be rewritten using Eq. (1) as

C =
1

2
log2

(
1 +

γ̄

2

2∑
i,j=1

xij

)
=

1

2
log2

(
1 +

γ̄

2
xs

)

where
∑2

i,j=1 xij = xs ∼ χ2
8 [5].

Since the transmitter has CSI knowledge, in every time

instant the source coding rate RREP can be adapted to

achieve the instantaneous capacity C. The distortion Dr

observed at the receiver is then [7]

Dr = 2−2RREP =
1

1 + γ̄
2 xs

which is a continuous random variable. Its expected value is

DREP = E
[
Dr

]
=

∫ +∞

0

1

1 + γ̄
2 z

f (8)
χ (z)dz

=
1

48

∫ +∞

0

z3

2 + γ̄z
e−

z
2 dz

which yields

DREP =
1

6
·
γ̄ − γ̄2 + 2γ̄3 − e

1

γ̄ Γ
(
0, 1

γ̄

)
γ̄4

The CDF FREP (d) of the distortion at the receiver can be

derived as

FREP (d) = Pr
{

Dr < d
}

= Pr

{
xs >

2 − 2d

γ̄d

}

= 1 − F (8)
χ

(
2 − 2d

γ̄d

)

C. ALM strategy

This strategy [1] employs the Alamouti scheme to obtain

two independent channels from the MIMO system. These

two channels are then used for the transmission of a single

description representation of the source, after demultiplexing

it into two half-rate substreams. The capacity for the ALM

strategy is given by [1]

C = log2

(
1 +

γ̄

2

2∑
i,j=1

|hij |2
)

that, from Eq. (1), can be expressed as

C = log2

(
1 +

γ̄

4

2∑
i,j=1

xij

)
= log2

(
1 +

γ̄

4
xs

)

where
∑2

i,j=1 xij = xs ∼ χ2
8 [5].

Using transmitter side information, the source coding rate

RALM can be adjusted to follow the variations of the capacity

C. Thus, the distortion at the receiver is given by [7]

Dr = 2−2RALM =
1(

1 + γ̄
4 xs

)2

Its expected value can be evaluated as

DALM = E
[
Dr

]
=

∫ +∞

0

1(
1 + γ̄

4 z
)2 f (8)

χ (z)dz

=
1

6

∫ +∞

0

z3

(4 + γ̄z)2
e−

z
2 dz

ThB4.3

1010

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 3, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 



which finally results in

DALM =
2

3
·
γ̄
[(

γ̄ − 4
)
γ̄ − 4

]
+ 4e

2

γ̄

(
3γ̄ + 2

)
Γ
(
0, 2

γ̄

)
γ̄5

The CDF FALM (d) of the distortion is

FALM (d) = Pr
{

Dr < d
}

= Pr

{
xs >

4 − 4
√

d

γ̄
√

d

}

= 1 − F (8)
χ

(
4 − 4

√
d

γ̄
√

d

)
D. SM strategy

In the SM strategy [1], a single description of the source,

i.e. a single symbol stream, is first demultiplexed and encoded

into two separate and independent substreams. Each sub-

stream is then transmitted simultaneously over each transmit

antenna and, at the receiver, an optimal joint maximum like-

lihood (ML) decoder is employed for retrieving the original

symbol stream. The capacity of this strategy is given by [1]

C = log2 det

(
I2 +

γ̄

2
HHH

)
(2)

where I2 is the 2 × 2 identity matrix and HH denotes the

conjugate transpose of the channel matrix H .

To determine the expression of the expected distortion at

the receiver for this strategy, we first need to introduce the

characteristic function φC(z) of the capacity C, defined as

[8]

φC(z) = E

[
ej2πCz

]
= K det

[
U(z)

]
where, for a 2 × 2 uncorrelated MIMO Rayleigh fading

channel, K = 1 and U(z) is a 2 × 2 matrix with ik-th

elements given by [8]

uik(z) =

∫ +∞

0

xi+k−2e−x

(
1 +

γ̄

2
x

)j 2πz
ln 2

dx (3)

Since the source coding rate RSM is adapted, in every time

instant, to the capacity C, we can now express the expected

distortion DSM in terms of the function φC(z) as [7]

DSM = E

[
2−2RSM

]
= E

[
e−2C ln 2

]
= φC

(
j
ln 2

π

)

= det

[
U

(
j
ln 2

π

)]
= û11û22 − û12û21 (4)

where we defined ûik = uik

(
j ln 2/π

)
. Developing the

expression in Eq. (3), we get

û11 = 2 ·
γ̄ − 2e

2

γ̄ Γ
(
0, 2

γ̄

)
γ̄2

û12 = 4 ·
(
2 + γ̄

)
e

2

γ̄ Γ
(
0, 2

γ̄

)
− γ̄

γ̄3

û21 = û12

û22 = 4 ·
γ̄
(
2 + γ̄

) − 4
(
1 + γ̄

)
e

2

γ̄ Γ
(
0, 2

γ̄

)
γ̄4

and, after substituting these expressions into Eq. (4), gives

the final expression of DSM as

DSM = −
16

[
γ̄ − (

γ̄ + 2
)
e

2

γ̄ Γ
(
0, 2

γ̄

)]2

γ̄6

+
8
[
γ̄ − 2e

2

γ̄ Γ
(
0, 2

γ̄

)][
γ̄
(
γ̄ + 2

) − 4
(
γ̄ + 1

)
e

2

γ̄ Γ
(
0, 2

γ̄

)]
γ̄6

To derive the CDF FSM (d) of the distortion at the receiver,

we first need to rewrite the expression of the capacity in Eq.

(2) using the singular value decomposition of H , to obtain

[9]

C = log2

2∏
i=1

(
1 +

γ̄

2
λi

)
= log2(x1x2)

where

xi = 1 +
γ̄

2
λi, i = 1, 2 (5)

and the λi are the two ordered nonzero eigenvalues of the

matrix HHH . Since λi > 0 and λ1 � λ2, it is immediate to

show that xi > 1 and x1 � x2.

The distortion observed at the receiver is then [7]

Dr = 2−2RSM =
1

(x1x2)2

and FSM (d) results

FSM (d) = Pr
{

Dr < d
}

= 1 − Pr

{
x1x2 <

1√
d

}

= 1 − F

(
1√
d

)
(6)

where F (z) = Pr
{
x1x2 < z

}
.

We now define S as the set of points (x1, x2) such that

S =
{

(x1, x2) ∈ R
2 : x1 > 1; x2 > 1; x1 � x2; x1x2 < z

}
If X is the vector X = (x1, x2) with joint PDF fX(x1, x2),
F (z) can then be evaluated as

F (z) =

∫
S

fX(x1, x2)dx1dx2

=
1

2

∫ z

1

∫ z
x2

1

fX(x1, x2)dx1dx2 (7)

The joint PDF of X can be expressed in terms of the joint

PDF fΛ(λ1, λ2) of the vector of the eigenvalues Λ = (λ1, λ2)
as [10]

fX(x1, x2) =
fΛ(λ1, λ2)

det(J)
=

4

γ̄2
fΛ(λ1, λ2) (8)

where J is the Jacobian matrix of X . Since from Eq. (5) we

have

λi =
2

γ̄

(
xi − 1

)
, i = 1, 2

we can rewrite Eq. (8) as

fX(x1, x2) =
4

γ̄2
fΛ

(
2

γ̄

(
x1 − 1

)
,
2

γ̄

(
x2 − 1

))
(9)
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Fig. 1: Expected distortion as a function of γ̄ for the different

strategies.

The joint PDF of the eigenvalues for a 2× 2 system with

uncorrelated fading between each antenna element can be

obtained from [11] and results

fΛ(λ1, λ2) = e−λ1e−λ2(λ1 − λ2)
2

which, substituting into Eq. (9), yields

fX(x1, x2) =
16

γ̄4
e

4

γ̄ e−
2

γ̄
(x1+x2)(x1 − x2)

2

Substituting this last expression into Eq. (7) gives

F (z) =
8

γ̄4
e

4

γ̄

∫ z

1

e−
2

γ̄
x2

∫ z
x2

1

e−
2

γ̄
x1(x1 − x2)

2dx1dx2

which can be finally written as

F (z) =
2

γ̄3
e

4

γ̄

∫ z

1

e−
2

γ̄
x2

·
{

e−
2

γ̄

[
γ̄2 − 2γ̄

(
x2 − 1

)
+ 2

(
x2 − 1

)2
]

− e−
2

γ̄
z

x2

[
γ̄2 + 2γ̄

( z

x2
− x2

)
+ 2

( z

x2
− x2

)2
]}

dx2

By using this expression into Eq. (6), it is then possible to

evaluate the CDF of distortion for the SM strategy.

III. DISCUSSION

Fig. 1 plots the expected distortion as a function of γ̄ for

the different strategies. As can be seen, the lowest distortion

is achieved with the SM strategy at all values of γ̄. This

performance, however, comes at the expense of realization

complexity, due to the presence of the joint ML decoder at

the receiver [1]. Similarly to the case of CSI at the receiver

only of [1], if the ALM strategy is employed to reduce this

complexity, only a small decrease in performance is observed,

especially at high values of γ̄. Significantly higher distortion

is achieved with the REP strategy.
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Fig. 2: CDF of distortion for REP strategy with different

values of γ̄.
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Fig. 3: CDF of distortion for ALM strategy with different

values of γ̄.

Figs. 2, 3 and 4 plot the CDF of the distortion for

different values of γ̄ respectively for REP, ALM and SM

strategies. The square markers in the plots represent the

value of the expected distortion for the respective value of

γ̄. Interestingly, an increase in the value of γ̄ not only

improves the value of expected distortion for every strategy

(as it appears evident also from Fig. 1), but also improves

the probability pe(γ̄) of achieving that distortion. The values

of pe(γ̄) for the different strategies and for different values

of γ̄ are reported in Table I. It can be observed that, given

the same increase of γ̄, the increase in pe(γ̄) in the REP

strategy is significantly lower than the increase in pe(γ̄) for

the remaining two strategies. For example, if γ̄ increases from

1 dB to 10 dB, pe(γ̄) in the REP strategy increases of about

0.04, while in ALM and SM it increases of about 0.10 and
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Fig. 4: CDF of distortion for SM strategy with different

values of γ̄.

TABLE I

PROBABILITY OF ACHIEVING EXPECTED DISTORTION FOR

THE VARIOUS STRATEGIES WITH DIFFERENT VALUES OF γ̄ .

pe(γ̄)

γ̄ = 1 dB γ̄ = 3 dB γ̄ = 5 dB γ̄ = 10 dB

ALM 0.630 0.658 0.684 0.731

REP 0.594 0.608 0.621 0.637

SM 0.641 0.678 0.712 0.787

0.14, respectively. Moreover, returning to Figs. 2, 3 and 4,

an increase of γ̄ causes also an increase in the slope of the

CDF for all strategies, suggesting that the values of distortion

become less variable as γ̄ increases.

A comparison of the CDF of the distortion for the various

strategies at a fixed γ̄ of 5 dB is reported in Fig. 5. Both ALM

and SM strategies have similar and very steep CDFs, which

means that it is possible with these strategies to achieve low

values of distortion with high probability. For example, with

a probability of 0.9, SM achieves a distortion approximately

equal to 0.05, while ALM achieves a distortion approximately

equal to 0.07. The REP strategy has a much less steep CDF

than the other two strategies and indeed with a probability of

0.9 it achieves a significantly higher distortion, approximately

equal to 0.15.

IV. CONCLUSIONS

We considered three strategies for the transmission of a

Gaussian source over a 2×2 MIMO system with transmitter

side information. These strategies are based on repetition

coding, the Alamouti scheme and spatial multiplexing. First,

we evaluated the expected value of the distortion at the

receiver and showed that the best performance is achieved

with the SM strategy, but at the expense of high realization

complexity. We also observed that employing the ALM
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Fig. 5: CDF of the distortion at the receiver for the different

strategies at a fixed γ̄ of 5 dB.

strategy brings only a slight decrease in performance, but can

effectively reduce this complexity. Then, we considered the

statistical distributions of the distortion at the receiver. We

showed that an increase in the signal-to-noise ratio brings,

for every strategy, higher probabilities of achieving the ex-

pected distortion and less variation of distortion. Finally, by

comparing the distributions we observed that both ALM and

SM strategies can achieve low values of distortion with high

probability, while at the same probability the REP strategy

achieves significantly higher distortions.
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