
Video Capacity of WLANs with a Multiuser
Perceptual Quality Constraint

Jing Hu, Sayantan Choudhury and Jerry D. Gibson
Department of Electrical and Computer Engineering

University of California, Santa Barbara, California 93106-9560
Email: {jinghu, sayantan, gibson}@ece.ucsb.edu

Abstract—As wireless local area networks (WLANs) become
a part of our network infrastructure, it is critical that we
understand both the performance provided to the end users and
the capacity of these WLANs in terms of the number of supported
flows (calls). Since it is clear that video traffic, as well as voice
and data, will be carried by these networks, it is particularly
important that we investigate these issues for packetized video.
In this paper, we investigate the video user capacity of wireless
networks subject to a multiuser perceptual quality constraint. As
a particular example, we study the transmission of AVC/H.264
coded video streams over an IEEE 802.11a WLAN subject to a
constraint on the quality of the delivered video experienced by
r% (75%, for example) of the users of the WLAN. This work
appears to be the first such effort to address this difficult but
important problem. Furthermore, the methodology employed is
perfectly general and can be used for different networks, video
codecs, transmission channels, protocols, and perceptual quality
measures.

I. INTRODUCTION

A. Motivation

Recently there has been broad interest in using packetized
video over wireless networks such as IEEE 802.11 wireless
local area networks (WLANs). As a result, there have been nu-
merous studies related to video over WLANs [1]. In particular,
research has been performed on cross-layer designs for video
over WLANs, including: (a) designing the network matched
to the special characteristics of video [2]–[4], (b) compressing
and transporting video adaptively with respect to the lower
layers in the OSI stack of the network [5]–[12], and (c) solving
the cross-layer design problem as an optimization problem
with the objective of selecting a joint strategy across multiple
OSI layers [13]–[15]. However, the video capacity of a WLAN
in terms of the maximum number of video users the WLAN
can support, a fundamental limit in video communications over
WLANs, has received relatively little attention. The reasons
are as follows.

First, videos can be compressed to essentially any desired
bit rate, resulting in different reconstructed video quality, and
therefore the investigation of video capacity should always be
accompanied by a quality constraint. However, video quality
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measurement is a very difficult problem on its own. The
conventional measures such as the mean squared error (MSE),
or equivalently the peak signal-to-noise ratio (PSNR) of the
distorted videos, are often criticized for correlating poorly
to perceptual video quality. On the other hand, the objective
perceptual video quality measures that are based on the lower
order processing of human vision systems (HVS) [16], [17]
are computationally very intensive [18], [19]. Furthermore, in
the situation when multiple users are using the same network,
which is inevitably the case when video capacity is under
investigation, the assessment of the quality of multiple videos
delivered over the network has not been studied.

Second, even if the quality of multiple video users is
defined, it is not clear how video capacity should be calculated.
Ideally, rate distortion bounds for videos will produce the
lowest rate that is required to compress a video subject to
a certain distortion constraint. However, due to the difficulty
of modeling the correlation among the pixel values in nat-
ural video sources, studying their theoretical rate distortion
bounds is often considered infeasible [20], [21]. Therefore
the lowest rate required for a certain video quality depends
on the specific video codec that is employed. This is also
true for voice, the capacity of which has been investigated
extensively in [22]; but unlike voice where codecs are usually
designed for a specified quality at a given compression rate,
the video coding standards do not specify a compressed video
bit rate and corresponding quality. Instead, the international
video coding standards [23]–[26] provide vast flexibility for
each application to design its own encoder according to its
specific compression requirement. Rate control (RC) [27]–[32]
and rate distortion optimization (RDO) [20], [21], [33], [34]
techniques have been included to optimize the video codecs
to compress videos with minimum distortion at a certain bit
rate. Conventionally, RC selects the quantization stepsizes and
RDO selects the intra/inter prediction modes, motion vectors
and other coding parameters. The RC/RDO problem itself is
a subject of intensive study, and unfortunately, the separate
treatment of RC and RDO and the interdependency between
them have caused a “chicken and egg” dilemma that has
prevented a global optimum from being obtained [35].

B. Contributions

In this paper we address these aforementioned challenges
in deriving the quality constrained video capacity of WLANs.



Since a video codec has to be specified when studying video
capacity of a WLAN, we choose AVC/H.264 because of its
performance and dominant popularity for video over WLAN
applications [36]. Among the different WLAN technologies,
we are particularly interested in IEEE 802.11a WLANs [37] in
a realistic frequency selective multipath fading environment.
The IEEE 802.11a WLAN operates in the relatively clean
5 GHz frequency band and uses 52-subcarrier orthogonal
frequency-division multiplexing (OFDM) with a maximum
raw data rate of 54 Mbit/s. It is a widely available WLAN
solution.

We start our investigation with a simulation of AVC/H.264
coded video over an 802.11a WLAN with multipath fading.
From the simulation we get a collection of videos whose
compressed data rate versus delivered quality performance is
independent of a specific RC/RDO algorithm or a specific
channel coding algorithm, and can be exploited to derive a
multiuser video quality indicator and video capacity formulas.
These proposed methodologies, however, can be generalized
to other video over WLAN applications that are different from
the simulation scenario that we investigate.

In this simulation, it is observed that even when the average
PSNR over all transmitted frames of a video with packet losses
is reasonably high, PSNRs vary significantly across the video
frames. Furthermore, the video quality varies dramatically
across the different transmissions over the channel. In order
to capture the distribution of the distortion across the video
frames and channel uses (transmissions, or realizations), we
propose a new statistical video quality indicator PSNR r,f as
the PSNR achieved by f% of the frames in each one of the r%
of the transmissions. This quantity has the potential to capture
the performance loss due to damaged frames in a particular
video sequence (f%), as well as to indicate the probablity of
a user experiencing a specified quality over the channel (r%).
The percentage of transmissions also has the interpretation
as what percentage out of many video users who access
the same channel, would experience a given video quality.
We further investigate the correspondence between PSNR f

and perceptual video quality through a subjective experiment
which results in a linear equation connecting PSNR r,f=90%

and MOSr, the mean opinion score (MOS) achieved by r% of
the transmissions. It is shown from this subjective experiment
that PSNRf=90% correlates much better with the delivered
perceptual video quality than the average PSNR across all
frames of a video, with no extra computatation.

There are more sophisticated perceptual video quality mea-
sures, such as those included in ITU recommendations ITU-R
BT.1683 and ITU-T J.144 [16], [17], for calculating the MOS
of a single video sequence. These sophisticated perceptual
video quality measures are based on comprehensive studies
of the human vision system (HVS). They study the perceptual
impacts of the compression artifacts and are shown to perform
better than the average PSNR across the video frames for the
compressed videos [38]. For video delivered over WLANs,
however, the quality degradation due to compression can be
overwhelmed by the quality degradation caused by the possible

packet losses in the wireless channel, even with packet loss
concealment. As a result, the MOS calculated from PSNR f

should be sufficient to indicate the perceptual quality of a de-
livered video sequence, without the huge computation required
by the more sophisticated video quality measurements.

On the video capacity side, due to the significant difference
in the intra-coded and inter-coded frame sizes of a compressed
video, we formulate upper and lower bounds for video capacity
of an 802.11a WLAN operated under the Distributed Coor-
dination Function (DCF), when there is no buffering at the
receiver. We further investigate the video capacity when there
is buffering at the receiver and obtain the minimum buffer size
for the video capacity to reach its upper bound. These results
appear to be the first work on the video capacity of WLANs.

Combining the above contributions, we propose a methodol-
ogy for video over WLAN communication system design and
evaluation, which consists of determining the video capacity in
the context of the delivered video quality constraints calculated
by PSNRr,f /MOSr. Practical issues such as the usage of a
specific rate control and rate distortion optimization scheme
and a specific channel coding scheme are also discussed.

C. Organization of this paper

The remainder of this paper is organized as follows. The
video over WLAN simulation setup is explained in detail in
Section II. Section III presents the results of the simulation
in terms of delivered quality and coded video data rate.
The results on the distribution of the delivered video quality
then motivates the proposal of a new video quality measure
PSNRr,f and its corresponding new multiuser perceptual
quality indicator MOSr in Section IV. Section V presents
the video capacity calculation under 802.11a DCF. Due to
the significant difference in the intra-coded and inter-coded
frame sizes of a compressed video shown in the coded data
rate part of Section III, the timing of intra-coded frames
among different video users is studied carefully in the video
capacity calculation. We discuss the video capacity jointly with
the perceptual quality constraint as well as some application
issues in Section VI. Section VII concludes and lists the key
contributions of this paper.

II. VIDEO OVER WLAN SIMULATION SETUP

We simulate the transmission of AVC/H.264 coded video
over 802.11a WLANs. AVC/H.264 provides a huge selection
of coding schemes and values for their parameters. As illus-
trated in Fig. 1, the center of this diagram is a simplified
AVC/H.264 encoder and the options for the major schemes and
parameters are presented in the callout balloons. We choose
the Baseline Profile of AVC/H.264 in its reference software
[39] version JM10.1 with low delay and low computational
complexity. Ninety frames each from a group of videos,
representing different types of video content, are coded using
combinations of group of picture sizes (GOPS) (10, 15,
30, 45 frames), quantization parameters (QP) (26 for fine
quantization and 30 for coarse quantization) and payload sizes
(PS) (small-100 bytes and large-1100 bytes). QP dominates the



quantization error and has a major effect on the coded video
data rate. GOPS determines the intra-frame refresh frequency
and plays an important role when there is packet loss. PS is the
parameter that is carried forward from the source to the PHY
layer. The remainder of the parameters to be selected in Fig. 1:
the intra-mode, block size and inter-frame prediction precision
are optimally chosen in the encoder to yield the minimum
source bit rate. We do not employ rate control schemes to
dynamically choose QPs to compress the video sequences at a
constant bit rate. Instead we focus on a constant QP case. This
is further justified by the preference of constant video quality
over constant bit rate [40], especially when the bandwidth
allocated to a video user need not be constant, which is likely
to be the case for WLANs when QoS is enforced. In Section
VI we discuss how the results of this paper can be used
even when a specific rate control or a specific rate distortion
optimization algorithm is employed.

The Nafteli Chayat model [41], an important indoor wireless
channel model with an exponentially decaying Rayleigh faded
path delay profile, is employed. The rms delay spread used
is 50 nanoseconds, which is typical for home and office
environments. In order to estimate the packet error rate under
different channel conditions, we modify a readily available
OFDM simulator for the IEEE 802.11a PHY [42]. Non-fading
channels are also considered for comparison. Noise is modeled
as AWGN for both the fading and non-fading cases. The
decoding at the receiver is based on soft decision Viterbi
decoding. We also assume perfect synchronization and channel
estimation.

We consider one-hop WLANs, in which case we limit our
attention to the PHY, MAC and APP layers. In the medium
access control (MAC) layer of IEEE 802.11, a cyclic redun-
dancy check (CRC) is computed over the entire packet, and if a
single bit error is detected, the packet is discarded. For data, a
retransmission would be requested, however, for our particular
video applications we do not request a retransmission, but
rely on packet loss concealment. Each realization of the
multipath delay profile corresponds to a certain loss pattern
for that fading realization. Two hundred and fifty packet loss
realizations are generated for each combination of the chosen
PHY data rate 6 Mbps, different average channel SNRs (3.5
dB for bad channel, 5 dB for average channel, 7 dB for good
channel), and two video PSs (small–100 bytes and large–1100
bytes).

Each compressed bit stream is corrupted based on the
packet loss patterns generated by the multipath fading channel
and then reconstructed in the AVC/H.264 decoder with its
nominal packet loss concealment (PLC) scheme. Different
PLC schemes will have an impact on the concealed video
quality and there exists an exhaustive literature proposing
different error concealment techniques. However, only a few
simple schemes are commonly used in practical applications
[5]. As a baseline, we apply the basic PLC method integrated
in AVC/H.264 reference software [39]. This PLC method
recovers the missing MBs in an I frame through spatial
interpolation and the missing MBs in a P frame by searching

Fig. 1. A simplified diagram of AVC/H.264 encoder with different coding
options and parameters

and copying the most likely MBs in the correctly received
reference frames. The previous frame is copied when the
whole frame is lost. This method is shown to be effective
in both PSNR and perceptual quality [43].

In summary, in this AVC/H.264 coded video over IEEE
802.11a WLAN simulation, we investigate six different param-
eters across the APP, MAC and PHY layers of the OSI stack.
They are the characteristics of a video (VIDEO), quantization
parameter (QP), group of picture size (GOPS), payload size
(PS), PHY data rate, and average channel SNR. They are listed
in the center of Fig. 2. Among these six parameters, PS, PHY
data rate and the average channel SNR have an impact on the
packet loss realizations, which together with the other three
parameters, decide the delivered video quality. On the other
hand, the four parameters on the top: VIDEO, QP, GOPS and
PS decide the coded video data rate, which in turn determines
the video capacity of a certain PHY data rate.

Fig. 2. Parameters investigated in video over WLAN simulation and their
impacts on the video capacity vs. delivered quality tradeoff

III. VIDEO OVER WLAN SIMULATION RESULTS

In this section we take a close look at the video over WLAN
simulation results that motivate the proposals of the new video
quality indicator and the video capacity bounds in the next two
sections.

A. Packet loss and video quality

Figure 3 plots the cumulative distribution function (cdf)
of the packet error rate (PER) over 250 realizations of each
channel for 100 byte and 1100 byte packets in a multipath
fading environment at average channel SNRs of 3.5 dB, 5 dB



and 7 dB when the 6 Mbps PHY data rate is used. The cdf of
PER for 100 byte packets and a channel SNR of 0.5 dB for
an AWGN channel is also plotted (the top curve in this figure,
marked with squares ′

�
′). It shows that for the same channel

SNR and the same PS, the PER of an individual multipath
fading channel realization can range from 0 to 1, since the
cdf’s of the PER of all fading channels are greater than 0 at
PER = 0 and less than 1 for PER < 1. This suggests that the
average PER over all realizations of a multipath fading channel
is not an appropriate indicator of the channel performance.
For example, for the multipath fading channel with PS = 100
bytes and average SNR = 7 dB (the second curve from top,
marked with circles ’o’ in Fig. 3), the average PER across
the realizations is 5.5%, but this average PER across the
realizations only represents the PER of a very small portion
of the realizations. As we can see from this figure: 70% of
the realizations actually have no packet loss; another 20% of
the realizations have packet loss less than 2%; and 10% of
the realizations have a higher PER than 5.5%. This is less a
problem for AWGN channels, since we see that the variation
of the PER of the AWGN channel is significantly less, only
from 1% to 3% in this figure. Figure 3 also shows that the
average PER of an AWGN channel is much lower than that
of a multipath fading channel even at a much poorer channel
SNR. Furthermore, for multipath fading channels, the 1100
byte packets are more likely to be lost than the 100 byte
packets.

Fig. 3. Cumulative distribution function (cdf) of packet error rate over 100
realizations of each channel in AWGN and multipath fading environments for
100 byte and 1100 byte packets and PHY data rate as 6 Mbps

We also study the performance variation in a single channel
realization and obtain a PSNR for each frame and each packet
loss pattern, for a combination of the codec parameters. Only
the PSNR of the luminance component of the video sequences
is considered and the peak signal amplitude picked in this
paper is 255. Figure 4 plots the PSNRs of each frame of the
video silent.cif coded at QP = 26 and 30, GOPS = 15, PS = 100
for 100 realizations of the multipath fading channel of average
SNR 7 dB and AWGN channel of SNR 3 dB, respectively,
when PHY data rate 6 Mbps is used. The thick lines in each

plot represent the average PSNRs across the 100 channel
realizations. This average should be slightly different than
the PSNR calculated from averaging the MSEs. In practice,
however, there is no significant difference between the two
definitions [44].

It is clear in Fig. 4 that even for the same video, coded
using the same parameters for the same average channel SNR,
the quality of the delivered video in terms of PSNR varies
significantly across different channel realizations. The plots in
Fig. 4 are typical for all of the videos and codec parameters we
tested. PSNRs also can vary dramatically from one frame to
another in the same processed video sequence. From Fig. 3 we
know that for the multipath fading channel, about 70% of the
realizations have no packet loss. These realizations overlap
and form the lines marked with “+” in Figs. 4(a) and 4(c).
For the AWGN channel, all realizations have similar PERs.
However, because of the prediction employed in video coding,
it is shown in Figures 4(b) and 4(d) that the realizations of
similar PER can generate completely different concealed video
quality. This suggests that neither the average PER, nor the
average PSNR across all the frames and all the realizations,
is a suitable indicator of the quality a video user experiences
and therefore these quantities should not serve as the basis for
developing or evaluating video communications schemes for
WLANs.

B. Coded video data rate

In order to study the number of video users that can be sup-
ported by any network, we need to study the coded/compressed
video data rate. Different from other types of signals such
as voice, the coded video data rate depends strongly on
the properties of individual videos. Also, the sophisticated
video codecs such as the AVC/H.264 standard, are suites of
coding options and parameters whose values are to be chosen
for specific videos and channel conditions. This flexibility
inevitably shapes the coded video data rate, and hence, alters
the number of video users a WLAN can support. In the
following we study the compressed intra (I) frame and inter
(P) frame sizes of a video which are shown later to be critical
in the video capacity calculation.

When all the other parameters are fixed, the coded I-frame
size of a video mostly depends on the complexity in a scene,
and the coded P-frame size depends on the motion across the
frames. In Fig. 5 we plot the coded frame size of each of
90 frames of three different videos: silent.cif, paris.cif and
stefan.cif. All of these videos are coded using QP = 22, PS =
100, and GOPS = 10. First, we can see that the I frames (the
1st, 11th, 21st, . . . frames) consume a much higher bit rate
than the P frames (the remaining frames). Second, although the
I-frame and P-frame sizes do vary throughout the 90 frames of
each video, they stay close to a certain level for each video.
Third, among the three videos, stefan.cif, which is a sports
video of a tennis player in the foreground and the audience in
the background, has the busiest scene and the highest motion;
silent.cif which is a head-and-shoulders video, encountered
regularly in videoconferencing, has the simplest scene and the



(a) QP = 26, fading@7dB, avgPER = 5.5% (b) QP = 26, AWGN@3dB, avgPER = 1.5%

(c) QP = 30, fading@7dB, avgPER = 5.5% (d) QP = 30, AWGN@3dB, avgPER = 1.5%

Fig. 4. PSNRs of each frame of the video silent.cif coded at GOPS = 15, PS = 100 for 100 realizations of multipath fading channel of average SNR 7 dB
and an AWGN channel of SNR 3 dB, when PHY data rate 6 Mbps is used. The thick lines in each plot represent the average PSNRs across the 100 channel
realizations

lowest motion; paris.cif with two people talking with relatively
stable background, most likely to be a news streaming video,
has intermediate scene complexity and intermediate level of
motion. The coded bit rate difference between silent.cif and
stefan.cif shown in this figure is as large as around 1 Mbps,
which cannot be overlooked when video capacity is under
investigation.

Fig. 5. Coded frame size of each frame of three videos compressed at QP
= 22, PS = 100, GOPS = 10

The GOPS decides the I-frame refresh rate, and therefore
the smaller the GOPS, the higher the coded video data rate.
However we notice that the difference in coded P-frame sizes
when different GOPSs are employed is negligible. For example

in Fig. 6, we plot the coded frame size of each frame of
stefan.cif compressed at QP = 26, PS = 100 and different
GOPSs. We can see that if a frame is inter-coded, its coded
frame size is almost unaffected by its distance to the previous
intra-coded frame. This happens because quantization is the
major lossy compression process in the encoder, and therefore
the same frame compressed using the same QP will have
similar reconstructed frames so that the next frames predicted
from the similar reconstructed frames will have similar frame
sizes as well.

Fig. 6. Coded frame size of each frame of stefan.cif compressed at QP =
26, PS = 100 and different GOPSs



IV. DEFINITION OF PSNRr,f AND ITS CORRESPONDENCE

TO PERCEPTUAL QUALITY OF MULTIPLE USERS MOSr

As shown in Section III-A and in particular in Fig. 4,
for video communication over WLANs, the PSNRs of the
delivered videos vary significantly across the video frames
and across the different realizations of the channel. In order
to capture the distribution of the distortion across the video
frames and channel uses, in this section we propose a statistical
PSNR based video quality measure, PSNRr,f , which is
defined as the PSNR achieved by f% of the frames in each
one of the r% of the realizations. Parameter r captures the
reliability of a channel over many users and can be set as
a number between 0% to 100% according to the desired
consistency of the user experience.

The proposal of using PSNRf , i.e., the lowest PSNR
achieved by f% (usually set as a majority) of the frames in a
single video sequence, to measure the perceptual quality of a
single video sequence is based on three observations that are
recognized by researchers in video quality assessment [19]:
1) the frames of poor quality in a video sequence dominate
human viewers’ experience with the video; 2) however, if only
a very small portion of the video frames are of poor quality,
the quality drop due to these few frames are not perceivable
by the human viewers ; 3) when the PSNRs are higher than a
threshold, increasing PSNR does not correspond to an increase
in perceptual quality that is already excellent at the threshold.

To confirm these observations, i.e., to study the correlation
between PSNRf and the perceptual quality of videos, as well
as to find a suitable range for the parameter f , a subjective
experiment is designed and conducted. Stimulus-comparison
methods [45] are used in this experiment, where two video
sequences of the same content were presented to the subjects
side by side and were played simultaneously. The video on the
left is considered to be of perfect quality while the video on
the right is compressed and then reconstructed with possible
packet loss and concealment. Three naive human subjects are
involved in this experiment. They are asked to pick a number
representing the perceptual quality of the processed video
compared to the perfect video from the continuous quality
scale shown in Figure 7. Fifty video pairs were tested and 20%
of them appear twice in this experiment to test the consistency
of the subjects’ decisions.

Fig. 7. Perceptual video quality scale in MOS

Figure 8 plots the opinion scores given by the three subjects
in circles (′o′), dots (′·′) and crosses (′+′). Of the 50 tested
videos, 18 are silent.cif, reconstructed from different levels
of packet losses. They are arranged from left to right with
ascending average of three subjects’ opinion scores. The same
is done for the 16 videos of paris.cif and the 16 videos of
stefan.cif. For each tested video, the PSNRs are calculated for

each frame, from which both average PSNR across all frames
and PSNRf with f as any value can be further calculated.
Since the PSNRs and the opinion scores are of different scales,
in order to compare them, the average PSNR and PSNR f

with f ranging from 0.5 to 0.99 are mapped to the opinion
scores through linear functions which yield the minimum mean
square errors in the fit.

We find that among all the values of f we investigate,
PSNRf with f = 90% correlates to the opinion scores
the best, whose linear mapping is plotted as solid lines in
Fig. 8. We also plot the best linear mapping of average
PSNRs in dashed lines for comparison. As seen from these
curves, PSNRf=90% correlates significantly better than av-
erage PSNR, to the perceptual quality for all three videos
that are given in circles ( ′o′), dots (′·′) and crosses (′+′) for
each video. The average PSNR underestimates the quality
at high quality level and overestimates the quality at low
quality level. This is because average PSNR treats all frames
equally. At high quality level, however, only a few frames with
relatively lower quality bring down the average PSNR but do
not affect the perceptual quality. At low quality level, on the
other hand, there are frames with extremely bad quality which
affect the overall video quality significantly while the average
PSNR is still quite high. This subjective experiment shows that
PSNRr,f can serve as an effective video quality measure,
and that f should be set around 90% for medium video frame
rates, such as 15 fps used in this paper. In this case the linear
mapping from PSNRr,f=90% to MOSr, the mean opinion
score (MOS) achieved by r% of the transmissions, is

MOSr = 19 + 3.6(PSNRr,f=90% − 19). (1)

Fig. 8. The opinion scores given by the three subjects and the the best linear
mappings of PSNRf=90% and average PSNR. Of the 50 tested videos, 18
are silent.cif, 16 are paris.cif and 16 are stefan.cif, reconstructed from different
levels of packet losses. They are arranged from left to right with ascending
average of three subjects’ opinion scores.

From here onwards in this paper, we call the new mul-
tiuser perceptual video quality indicator PSNR r,f /MOSr.
PSNRr,f focuses on the distribution of the video quality
across the video frames and channel uses, while MOSr

also provides guidance on the perceptual quality across dif-
ferent users. The MOS in MOSr can be calculated from



PSNRf=90% using Eq. (1). More subjective experiments
involving more human subjects need to be conducted to con-
firm Eq. (1). The definition of PSNRr,f /MOSr is motivated
by the AVC/H.264 coded video over IEEE 802.11a WLAN
simulation, but this indicator is independent of the simulation
setup and can be exploited in different video communication
systems. In real video communication systems, the receiver
can be set up to monitor the decoded video quality at regular
intervals. With a fixed frame rate of transmitted video, it is
then straightforward to calculate the number of frames under
investigation for that period of time. Here we briefly discuss
an example of how PSNRr,f /MOSr can be used.

In Fig. 9 we plot the MOSr of three videos coded by
AVC/H.264 using QP = 26, GOPS = 10, PS = 100 bytes and
transmitted over an 802.11a WLAN with a PHY data rate of 6
Mbps at average channel SNRs of 5 and 7 dB, respectively. In
the 7 dB channel (the three curves on the right) for example,
if all users are assumed to be communicating the same type of
videos and an 80% consistency in user experience is desired,
i.e., r=0.8, the videoconferencing users (silent.cif) experience
an “excellent” video quality; the news watchers (paris.cif)
experience a “good” video quality, but the sports fans only
receive “bad” quality videos, corresponding to a MOS of 30
out of 100, which is 40 to 50 points lower than those of
the other two groups of users. This information can then be
utilized for link adaptation, system performance evaluation, or
system design purposes. For example, depending on the type
of videos a specific communciation system targets, a lower
PHY data rate might need to be used, if one is available,
in order to achieve a good user experience. We discuss in
more detail the multiuser perceptual video quality indicated
by PSNRr,f /MOSr together with the video capacity bounds
in Section VI.

Fig. 9. MOSr of three videos coded by AVC/H.264 using QP = 26, GOPS
= 10, PS = 100 bytes and transmitted over 802.11a WLAN with a PHY data
rate of 6 Mbps at average channel SNRs 5 and 7 dB

V. VIDEO CAPACITY OF AN IEEE 802.11A WLAN WITH

DCF

In this section we investigate video capacity of an 802.11a
WLAN with DCF. The rule of thumb in the video capacity

calculation is that all video frames of all users should arrive
at the playout buffer before their respective playout deadlines.
If we do not consider extra buffering at the playout buffer,
after an unavoidable initial delay for the first video frame to
be transmitted to the receiver, the playout deadline of each
following frame is simply 1 over the frame rate (FR) (in frames
per second, or fps) of the video sequence after the time this
frame is generated at the transmitter. For example, if the videos
are to be displayed at the receiver side at a FR of 20 fps, the
current frames of all users need to be transmitted within 0.05
second, or 50 ms. In the following we first calculate the time
required to transmit one frame of a single video user. We then
divide the transmission deadline by that transmission time to
calculate the number of users that can be supported.

IEEE 802.11 defines two different MAC mechanisms: the
contention based Distributed Coordination Function (DCF)
and the polling based Point Coordination Function (PCF).
At present, only the mandatory DCF is implemented in most
802.11 compliant products. DCF achieves automatic medium
sharing between compatible stations by implementing Carrier-
Sense Multiple Access with Collision Avoidance (CSMA/CA).
In Appendix A we discuss this mechanism in more detail
and calculate the transmission time Tpacket(PS, DR) (in
milliseconds) of a packet of a certain payload size, PS, over
a certain 802.11a PHY data rate, DR, under DCF.

With Tpacket(PS, DR) calculated, we only need to know
how many packets are in a video frame in order to calculate
the total time required for a video frame to be transmitted
successfully. We already investigated the AVC/H.264 coded
video frame sizes of different types of videos in Section III-B,
where we show that when all the other parameters are fixed,
the coded I-frame size and P-frame size stay close to a certain
level for each video. We use SI and SP to denote the average
I-frame and P-frame sizes of each video. The values of S I and
SP depend on the video source, the video codec employed, and
the schemes and parameters used in video coding. In [46] we
study this dependence extensively and propose two heuristic
formulas to predict the compressed I frame and P frame sizes
from the coding parameters.

In the following video capacity calculation, we assume that
all the video users are communicating the same type of videos,
i.e., videoconferencing, news streaming, or sports streaming.
We also assume that H.264/AVC is the default video codec
used by all users and that similar values of the video codec
parameters are chosen for all users. Therefore, the values
for SI and SP are considered the same for all video users.
Although in reality a WLAN will possibly transmit a mix
of different types of video streams, it is still important to
know the maximum number of users that can be supported for
individual streams. The reasons are: 1) it provides the network
operators an idea of how many users can be supported in the
network in an identical traffic category; 2) if there is a mix of
video users, the capacity number can be approximated by an
interpolation of the capacity values for each traffic category
present. For instance, if video ”Stefan” has a capacity of X
users and ”News” has a capacity of Y users, the total number



of users that can be supported, if there is a mixture of ”Stefan”
and ”News” users, would probably be something between X
and Y depending on the distribution of ”Stefan” and ”News”
users.

Since collisions are a function of traffic mix, traffic loading,
retransmission limits, and QoS constraints, we do not consider
collisions in our capacity calculation. We do acknowledge
that the collisions will possibly reduce both the upper and
lower bounds of the video capacity. Also during the course
of the capacity calculation, we assume that the frames are
always received without errors, however, we study the effect
of transmission errors extensively when we investigate the
delivered quality of the videos in Sections IV and VI.

In the following we derive the video capacity both with and
without extra buffering at the receiver.

A. Video capacity when there is no extra buffering at the
receiver

As shown in Section III-B, there is a significant difference
between SI and SP , the compressed I and P frame sizes.
Since the contention based DCF does not have the capability
of coordinating the video users, we need to investigate the
following two extreme cases, in terms of the timing of I frame
refreshing among the users, to calculate the upper and lower
bounds of video capacity. The gap between the upper and
lower bounds of video capacity might be reduced if a specific
rate control scheme is employed such that the difference
between SI and SP is reduced. This issue will be discussed
as part of the application in Section VI.

1) Worst case: all users happen to have I-frames to be
transmitted at the same time, such that the capacity,
denoted by Cm, is decided by I-frame size, as

Cm =

⌊

103

FR

Tpacket(PS, DR) × SI

PS

⌋

, (2)

where Tpacket(PS, DR) (in milliseconds) refers to the
transmission time of a packet of a certain payload size,
PS, over a certain 802.11a PHY data rate, DR, under
DCF; SI

PS , the compressed I-frame size SI divided by
the payload size PS, is the number of packets contained
in a compressed I-frame; the numerator 103

FR , is the
transmission deadline for the current frames of all video
users, as we discuss in the first paragraph of this section.

2) Best case: all users happen to be coordinated in I-
frame refreshing, i.e., if a WLAN supports CM video
users, at any time, there are at most

⌊

CM

GOPS

⌋

users
sending/receiving their I frames. The video capacity
in this case, which forms an upper bound for all the
different timing of the I-frame refreshing, is

CM =

⌊

10
3

F R
−

⌊

CM
GOP S

⌋

×
SI
P S

×Tpacket(PS,DR)

Tpacket(PS,DR)×
SP
P S

⌋

+
⌊

CM

GOPS ,
⌋

(3)

where the numerator in the first part of the summation
calculates the time left for other users to transmit their

P-frames and the corresponding denominator calculates
the total time required to transmit a P-frame.
The above equation can be solved for CM . When the
timing is such that the video frames of all users are
transmitted contiguously end-to-end without collisions,
CM is calculated based on a group of pictures, as

CM =

⌊

GOPS × 103

FR

Tpacket(PS, DR) × SI+SP ×(GOPS−1)
PS

⌋

.

(4)
The numerator in this formula calculates the total trans-
mission time allowed for a group of pictures, with a
group of picture size GOPS, of all users. The denom-
inator in the formula calculates the total transmission
time of one video user, which is Tpacket(PS, DR), the
transmission time of a packet of a certain payload size,
PS, over a certain 802.11a PHY data rate, DR, under
DCF, multiplied by SI+SP ×(GOPS−1)

PS , the number of
packets contained in a compressed group of pictures of
a single video user.

B. Video capacity with a playout buffer of b milliseconds

The playout buffer at the receiver can allow some extra
delay of the video frames, 100 ∼ 500 ms for videoconfer-
encing and up to a few seconds for video streaming. We
use b in milliseconds or ms to denote the buffer length. The
starting time of playing a video is normally delayed for b
ms to ensure smooth video playing once it starts. However,
the existence of a playout buffer is not for each frame in
a video to have some extra transmission time. For example,
when FR = 20 fps and if we were to allow 5 ms extra delay
for each video frame, which gives only a 10% increase in
their transmission time, within 1 minute, the last frame is
already delayed 5ms/frame× 20fps× 60sec = 6 seconds,
which is obviously too large for any type of video application.
The playout buffer is only for the frames that have more bits
than the other frames, such as I frames, to take more time
to transmit, and then the extra time taken by these frames is
compensated by the following less intensive frames, such as P
frames. Therefore when the buffer is longer than the time saved
by all P frames in a GOP, Cb, the video capacity with a buffer
of length b (in milliseconds), is simply calculated based on a
group of pictures, which is exactly the upper bound of video
capacity, CM , when there is no buffering at video playout.

For the video capacity to achieve its upper bound, the buffer
length b needs to be

b ≥

(

103

FR
− Tpacket(PS, DR)

SP

PS
CM

)

(GOPS − 1), (5)

i.e., b needs to be larger than the time saved by the trans-
mission of each P frame, multiplied by the total number of P
frames in a group of pictures. If we substitute for CM with
the expression in Eq. (4), we get

b ≥
103

FR

( SI

SP
− 1)(GOPS − 1)

SI

SP
+ (GOPS − 1)

. (6)



In Fig. 10 we plot the minimum buffer length b for the video
capacity to achieve its upper bound CM for typical values
of SI

SP
and GOPS and a FR of 20 fps. Clearly when there

is no difference in the compressed I-frame and P-frame, i.e.,
SI

SP
= 1 and GOPS = 1, the required buffer size is 0. As seen

from Fig. 10, b is always less than 1 second, which is smaller
than the buffer length of typical streaming applications. For
these two scenarios, Cb is always equal to CM . For video
conferencing, if SI

SP
and/or GOPS are set to be relatively

large numbers, the requirement for buffer size might not be
satisfied. In this case, Cb fluctuates between CM and a lower
bound with buffering, denoted by Cm,b as

Cm,b =

⌊

103

FR + b

Tpacket(PS, DR) × SI

PS

⌋

. (7)

The increase from Cm, the lower bound of video capacity
without buffering, to Cm,b, the lower bound of video capacity
with buffering, can be approximated by comparing b with 103

FR .
If we consider the case when there is no extra buffering as

a special case of buffer length b = 0, the results in this section
can be summarized as

Cm,b ≤ Cb ≤ CM , (8)

i.e., the video capacity with extra buffer (length of b ms),
fluctuates between the lower bound Cm,b and the upper bound
CM , which are calculated in Eqs. (7) and (4) respectively. C b

reaches its upper bound CM when the buffer length b satisfies
Eq. (6), which is normally the case for video streaming but
not always for video conferencing.

Fig. 10. The minimum buffer length b for the video capacity to achieve its
upper bound CM , for typical values of SI

SP
and GOPS and a FR of 20 fps

VI. PERCEPTUAL QUALITY CONSTRAINED VIDEO

CAPACITY AND ITS APPLICATIONS

In Sections IV and V, we propose a new multiuser per-
ceptual quality indicator PSNRr,f /MOSr and video capacity
bounds, respectively. In this section we exploit these two afore-
mentioned contributions jointly to investigate video capacity
with a perceptual quality constraint. We present some of our

video over WLAN simulation results as an example, and we
discuss how to use our method in other practical systems.

Table I lists the lower and upper bounds of video capacity
Cm and CM for silent.cif and stefan.cif, coded in our sim-
ulation using all the combinations of PS, QP and GOPS, at
PHY data rate = 6 Mbps and FR = 15 fps. The corresponding
MOSr=75%, i.e., the MOS achieved by 75% of these video
users, are listed in Table II. By looking at Table I and Table II
together, we can find out not only the number of video users
a WLAN can support under different conditions but also the
quality experienced by a majority of the users.

Throughout this paper we have pointed out the impact of
the video characteristics on both the delivered quality and the
coded video rate, such as in Figs. 5 and 9. In this section
we can see the dramatic difference due to the different videos
in terms of video capacity bounds as well as MOSr=75% in
Tables I and II, respectively. For example, when PS = 100, QP
= 26 (the underlined numbers in both Tables), from Table I
the WLAN can support up to 8 videoconferencing (silent.cif)
users, but it can only support at most one sports streaming
(stefan.cif) user. Now we further consider the video quality
experienced by these users. When the channel SNR = 5 dB,
75% of the 8 videoconferencing (silent.cif) users experience
a “fair” quality, a MOS of around 50; however the single
stefan.cif user only gets very poor quality, a MOS close to 0.
Even though the results of only three videos are shown in this
paper, these results demonstrate clearly that when designing or
evaluating a video communication system, the characteristics
of typical videos to be transmitted need to be decided first.

Now we focus on the video stefan.cif, i.e., a typical sports
streaming video, and discuss different ways to employ the
video capacity and PSNRr,f/MOSr. First, they can be
jointly considered to derive perceptual quality constrained
video capacity. For example, at PHY DR = 6 Mbps and
FR = 15 fps at PS = 1100 and QP = 26 (the underwaved
numbers in both Tables), from Table I a maximum of 5 sports
streaming users can be supported; however from Table II if the
channel SNR is on average 5 dB, 75% of the 5 users actually
experience poor quality, a MOS of 0 out of 100. If the channel
SNR is on average 7 dB, 75% of the 5 users experience a
quality between “fair” and “good”, a MOS between 59 to 68.
Therefore if we set the quality constraint as “75% of users
are guaranteed a fair video quality”, the video capacity of
PHY DR = 6 Mbps at channel SNR = 5 dB is not 5 but 0.
Second, video capacity and PSNRr,f/MOSr can be used to
choose the compression and communication parameters. For
example, between PS = 100 and PS = 1100, the larger payload
size needs to be chosen if higher video capacity is desired,
and the smaller payload size is chosen if the quality the users
experience needs to be higher. We do not show the results for
other payload sizes or other PHY data rates, but it is clear that
these parameters can be chosen based on similar criteria.

Some of the numbers in these two tables are a bit surprising.
For example, as we increase GOPS from 10 to 45, the video
quality in MOSr=75% does not necessarily decrease even
though the I-frame refreshing becomes less and less frequent.



TABLE I
ONE WAY VIDEO CAPACITY: PHY DATA RATE=6 MBPS, FR=15 FPS

Video
PS

(bytes)

QP=26 QP=30

Cm
CM Cm

CM

GOPS=10 15 30 45 GOPS=10 15 30 45
silent.cif 100 0 4 6 7 8 1 8 10 12 14

(videoconferencing) 1100 2 9 11 14 15 4 18 21 27 30
stefan.cif 100 0 1 1 1 1 0 2 3 3 3
(sports) 1100 1

:

5
:

5
:

5
:

5 2 8 9 10 11

TABLE II
MOSr=75% CALCULATED FROM PSNRr=75%,f=90% FOR SILENT.CIF AND STEFAN.CIF

Channel
SNR(dB)

Video PS
(bytes)

QP=26 QP=30
GOPS=10 15 30 45 GOPS=10 15 30 45

5
silent.cif

100 45 52 46 43 55 51 48 45
1100 0 0 0 0 0 0 0 0

stefan.cif
100 0 12 0 9 13 10 10 13
1100

:

0
:

0
:

0
:

0 0 0 0 0

7
silent.cif 100 84 84 84 84 75 75 75 75

1100 84 84 84 84 75 75 75 74

stefan.cif 100 75 82 74 73 71 72 71 70
1100

::

68
::

59
::

62
::

62 60 62 63 51

Also the effect of QP on the delivered video quality with
possible packet loss and concealment is quite complicated and
dynamic. On one hand, lower QP means finer quantization and
yields better video quality when there is no packet loss. On the
other hand, lower QP corresponds to more packets for a video
sequence, and when there is packet loss, more packets might
be lost, and the quality improvement in the received packets
because of finer quantization is jeopardized by the quality
deterioration caused by the lost and concealed packets. We
discuss these observations and the interplay of the parameters
in a packet loss environment in [47].

The PSNRr,f /MOSr constrained video capacity can also
be employed by a video application which might use a specific
RC/RDO scheme, and/or a specific channel coding scheme.
With RC/RDO, the bit stream should be smoother in terms
of the compressed I-frame and P-frame sizes and there may
be intra-coded blocks in some P frames. This only makes SI

SP

smaller than that in our simulation, which brings the upper and
lower bounds of video capacity closer. In some cases, even if a
GOPS is fixed initially, there might be a sudden scene change
in a video sequence, in which case a new GOPS will need to
be incorporated in the capacity bounds and minimum buffer
size calculations. If we include channel coding, the packet
size and therefore the time required for a video packet to be
transmitted successfully needs to be calculated based on the
coding scheme and its parameters.

VII. CONCLUSIONS

In this paper we investigate multiuser perceptual quality
constrained video capacity for WLANs. As a particular ex-
ample, we investigate the delivered quality and coded data
rate of AVC/H.264 coded video over IEEE 802.11a WLANs
in a frequency selective multipath fading environment.

We show that for the same video coded using the same
parameters for the same average channel SNR, the quality
of the concealed video varies significantly across different
realizations. The PSNRs also vary from one frame to another
in the same processed video sequence. Neither the average
PER nor the average PSNR across all of the frames and all
of the realizations is a suitable indicator of the quality a
video user experiences, and therefore they should not serve
as the basis for video communications quality assessment. A
new multiuser perceptual video quality indicator PSNR r,f

/MOSr is proposed to capture the distribution of the distortion
across the video frames and channel uses (realizations or
number of users). PSNRr,f is defined as the PSNR achieved
by f% of the frames in each one of r% of the transmissions.
A subjective experiment sets up a linear equation connecting
PSNRr,f=90% and MOSr, the mean opinion score (MOS)
achieved by r% of the transmissions.

Due to the significant difference in the intra-coded and
inter-coded frame sizes of a compressed video, the upper
and lower bounds for video capacity of an 802.11a WLAN
operated under the Distributed Coordination Function (DCF)
are formulated for the case when there is no buffering at the
receiver. The video capacity when there is buffering at the
receiver is also studied, and the minimum buffer length for
the video capacity to reach its upper bound is obtained.

Combining the multiuser perceptual quality indicator and
the video capacity calculation, a methodology for video over
WLAN communication system design and evaluation is pro-
posed, which consists of determining the video capacity of a
WLAN in the context of the delivered video quality constraints
calculated by PSNRr,f /MOSr. This work appears to be the
first such effort to address this difficult but important problem.
Furthermore, the methodology employed is perfectly general
and can be used for different networks, video codecs, trans-



mission channels, protocols, and perceptual quality measures.

APPENDIX A
TRANSMISSION TIME OF ONE PACKET UNDER 802.11A

DCF

IEEE 802.11 defines two different MAC mechanisms: the
contention based Distributed Coordination Function (DCF)
and the polling based Point Coordination Function (PCF).
At present, only the mandatory DCF is implemented in most
802.11 compliant products. DCF achieves automatic medium
sharing between compatible stations by implementing Carrier-
Sense Multiple Access with Collision Avoidance (CSMA/CA).
A station using the DCF has to follow two medium access
rules: 1) the station will be allowed to transmit only if its
carrier-sense mechanism determines that the medium has been
idle for at least a Distributed Inter Frame Space (DIFS) time,
and 2) in order to reduce the collision probability among
multiple stations accessing the medium, the station will select
a random backoff interval after deferral or prior to attempting
to transmit another packet after a successful transmission. An
acknowledgment (Ack) packet will be sent by the receiver
upon successful reception of a data packet. It is only after
receiving an Ack packet correctly that the transmitter assumes
successful delivery of the corresponding data packet. The
Short Inter Frame Space (SIFS), which is smaller than DIFS,
is the time interval between reception of a data packet and
transmission of its Ack packet. The timing of successful packet
transmissions is shown in Fig. 11. For a detailed explanation
on the 802.11a DCF the readers are directed to [48].

Fig. 11. Timing of successful frame transmissions under the DCF

Let Tpacket(PS, DR) be the total time (in milliseconds)
required for a packet of payload size of PS to be transmitted
successfully over a certain PHY data rate of DR under 802.11a
DCF. According to Fig. 11, Tpacket(PS, DR) is composed of
the DIFS time, the backoff time, the time to send the video
packet itself, the SIFS time, and the time to transmit the Ack
frame, as

Tpacket(PS, DR) = tDIFS + tBackoff+
tpacket(PS, DR) + tSIFS + tAck(DR).

(9)

The following two formulas of calculating tpacket(PS, DR)
and tAck(DR) are standard and are presented here without
further explanation. Interested readers can refer to the 802.11
standards [37] or other research papers such as [48],

tpacket(PS, DR) = tPLCPPreamble+

tPLCP SIG +
⌈

28+(16+6)/8+40+PS
BpS(DR)

⌉

· tSymbol.
(10)

tAck(DR) = tPLCPPreamble+

tPLCP SIG +
⌈

14+(16+6)/8
BpS(DR)

⌉

· tSymbol.
(11)

For the PSs of 100 bytes and 1100 bytes, and the DR of 6
Mbps that we implement in our simulation and that is used as
examples in Section VI,

tpacket(100bytes, 6Mbps) = 248µs,
tpacket(1100bytes, 6Mbps) = 1584µs,
tAck(6Mbps) = 44µs.

(12)

The backoff time tBackoff is set as aCWmin/2 ×
tSlotT ime = 15/2× 9 = 67.5µs.

Summarizing the above calculations, the time needed to
successfully transmit 100 byte and 1100 byte video packets
over a PHY DR of 6 Mbps is

Tpacket(100bytes, 6Mbps) = 0.4095ms,
Tpacket(1100bytes, 6Mbps) = 1.7455ms.

(13)
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