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ABSTRACT

Matching pursuit (MP) provides a way to expand signals in
terms of any set of time-limited functions, or atoms, called
a dictionary. These decompositions are finding use in sig-
nal analysis and coding. It has been shown that a dictionary
should be designed carefully, but its effects on decomposi-
tion have not been studied in detail. We look at the effects
of dictionaries on the decomposition of non-noisy speech sig-
nals using MP, by five dictionaries. It is found that Gabor
atoms work sufficiently well, and have fewer adverse effects
in reconstruction compared to the other dictionaries. For a
reconstruction to sound perceptually close to the original, a
rate of 3000 atoms per second (aps) on average is required.
At rates as low as 400 aps the speech remains intelligible. Fi-
nally, the use of decompositions to visualize time-frequency
distributions of speech is explored.

1. INTRODUCTION

Relatively recent work has explored expanding digital signals
in terms of functions that are more representative of the signal
than other basis functions. One such method, matching pur-
suit (MP), iteratively finds best matches of a signal to vectors
in a usually highly redundant and over-complete set of time-
limited functions, or atoms, called a dictionary [1]. The se-
lection is based on maximizing the inner product of the signal
and vectors in the dictionary, which minimizes the squared er-
ror of the reconstruction. The signal can then be represented
as a linear combination ofN scaled atoms and a residual:

f(t) =
N−1∑

n=0

〈Rnf, gγn
〉gγn

+ RNf (1)

wheregγn
(t) is a unit-norm vector in the dictionary, which is

indexed byγn. After each match, the parameters of the se-
lected atom are stored and the process repeats on the residual
signal until its energy passes a specified minimum or a re-
quired number of atoms have been found. Each atom is char-
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acterized by several parameters, such as size, center time,fre-
quency, phase, and norm. The resulting representations can
be more sparse and flexible than other expansions, but at the
price of efficiency, convergence, and increased computation.

Fig. 1. Examples of the dictionary atoms used in this study.

MP decompositions (MPD) have been used to encode and
reconstruct a signal [2], aid in feature extraction, signalanal-
ysis, and classification [3, 4], and transformation and visual-
ization [5]. By superimposing the Wigner-Ville distribution
(WVD) of each atom selected by a decomposition, a time-
frequency distribution (TFD) can be created that has smaller
time and frequency support than that given by other methods,
such as the short-term Fourier transform (STFT).

Mallat and Zhang [1], and Davis [6], have studied the the-
oretical behaviors of the decomposition process, and the im-
portance of the dictionary. Others have researched optimal
dictionary sizes for decompositions [7]. Some have even sug-
gested that particular atoms are more efficient for some sig-
nal types, such as damped sinusoids for speech [8]. Despite
this growing research, there exists little exploration in the ac-
tual effects of different dictionaries on signal decomposition.
Given monophonic, non-noisy speech, how efficiently can it
be represented and how accurately can it be reconstructed us-
ing a given dictionary? In this paper we present the results of
decomposing several speech signals with five different dictio-
naries using non-orthogonal MP.



2. IMPLEMENTATION AND SPEECH EXAMPLES

To investigate the effects of dictionaries on MPD of speech,
we have used the LastWave (LW) software package [9], with
the MP implementation by Gribonval, Bacry, and Abadia.
There are numerous atom types available in this software, in-
cluding Gabor atoms (modulated Gaussians) [10], complex
exponentials, and “Fonction d’onde Formantique” (FOF) [11].
Figure 1 shows examples of each type of atom.

Inspecting the code of LW, one can find that for an in-
put signal ofN samples, a dictionary is created that virtually
has26N vectors for each atom type. Atom sizes are lim-
ited to thirteen powers of 2, from 4 to 16384 samples, which
is imposed to speed the algorithm. When searching for best
matches, atom times are skipped by one quarter the atom size.
The number of frequencies each atom can have is one half
their size in samples. The criteria for atom selection is de-
termined by the largest inner product of the signal with the
dictionary.

Four short speech signals from different speakers were se-
lected for this study, taken from “Books on CD.” Each signal
was reduced to one channel, lowpass filtered, and downsam-
pled to 8 kHz, with 16-bit quantization. Decompositions of
each signal were found using three homogeneous, and two hy-
brid dictionaries: Gabor atoms, complex exponentials, FOF,
and unions of the Gabor atoms with the other two. These
atom types were selected because their inner products can be
computed analytically [9]. Half the speech signals were from
male speakers (“speech 2,”, “3”). One of the female speakers
produced a pathological voice (“speech 4”).

In each MPD, the entire signal was decomposed at once,
as opposed to using a windowed approach. The reason this
was done was first to see how the algorithm distributes the
atoms, second to eliminate redundancy created by overlap-
ping windows, and third to reduce the possibility of the algo-
rithm choosing atoms that do not exist within the signal, e.g.
block effects.

3. COMPARISONS OF DICTIONARIES

Figure 2 shows the decay of residual energy for each speech
signal using a Gabor dictionary as a function of the average
atom rate. The average number of atoms per second (aps)
is employed because when decomposing an entire signal at
once the actual rate of atoms varies over time depending on
the concentration of energy in the signal.

The rate of residual energy decay approaches an asymp-
totic limit that depends only on the dictionary, and not the sig-
nal [6]. After an initial quick descent, when the dictionaryis
very similar to the signal, the residual decay rate slows to that
limit–approximately -8 dB per 1000 aps for the Gabor dictio-
nary. The slow decay rate of “speech 3” can be explained by
the presence of equalization; its spectrum was flatter than the
others, thus requiring more atoms.
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Fig. 2. Residual energy of four speech signals as a function
of average atom rate for Gabor dictionary. Duration of each
signal is given in legend.

Figure 3 plots the decay of residual energy for two speech
signals for each dictionary, as a function of atom rate. The
same behavior is observed for the other speech signals. It is
clear here that the dictionary of complex exponentials is the
least efficient at representing the signals. For “speech 1,”at a
residual level of -50 dB, over 1000 more aps are needed for
the exponential than for the Gabor dictionary. This is not sur-
prising since exponential atoms are asymmetric and discon-
tinuous, requiring more atoms to correct for these character-
istics. The asymptotic decay rate of the complex exponential
dictionary is about -7 dB per 1000 aps.

Both hybrid dictionaries performed better than the three
homogeneous ones, which is predictable since increasing the
size of a dictionary usually gives a more sparse decomposi-
tion [7]. The dictionary that combines Gabor and FOF atoms
performed the best, though minimally so compared with the
homogeneous Gabor dictionary. At a residual level of -50 dB,
this difference is only about 250 aps.

3.1. Reconstructions

By listening to the reconstructions, it was found that a mini-
mum rate of 3000 aps for each dictionary except the exponen-
tials, is required for near transparency. The exponential dic-
tionary required over 1000 aps more to reach a similar level of
quality. From figure 3 it can be seen that the residual energy
is at -50 dB at these rates. When considering only the intel-
ligibility of the speech, it was found that the average atoms
rates could be as low as 400 aps.

By decomposing a signal in its entirety, as opposed to
decomposing time-limited portions of it, a constant rate of
atoms cannot be guaranteed. When using the inner product as
the choice function, MP will naturally choose more atoms in
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Fig. 3. Residual energy of two speech signals as a function of
average atom rate for the five dictionaries.

regions of high energy, to the detriment of other low energy,
but possibly perceptually significant, regions. The effects of
this can be heard; at times the reconstruction sounds incom-
plete. These effects can be resolved by using a windowed
approach to the decomposition, but at a price of redundancy
in the analysis.

3.2. Time-Frequency Distributions

Figure 4 compares two TFDs of “speech 1,” one acquired
from the superposition of the WVD of each atom selected
in the MPD using Gabor atoms (middle), and the other cre-
ated using a narrowband STFT (bottom). The speech signal
is seen at top with a voiced/unvoiced profile. One can clearly
see that though the WVD of an atom gives a superior TFD of
that atom, in the sense that its time and frequency support are
minimized, doing so for a collection of atoms found from a
decomposition of a natural signal may not provide an accu-
rate representation of the signal energy distribution.

The arrows show instances of where the decomposition
displays curious behaviors: (1) points to a time that shows
energy in the WVD, but in the time domain has minimal en-
ergy. Though the combination of the atoms in this case sums
to zero, this is not reflected by the WVD, as it is in the STFT.
This “failure” has been noted before [12]. (2) points to the
sibilance of the word “she” decomposed as several short high
frequency atoms. The MPD has found a mass of atoms that
attempt to precisely characterize that realization of noise. (3)
points to a fine speech structure missing entirely from the
WVD. (4) points to a dipthong approximated by several short
duration atoms. All these effects are seen in WVDs using the
other dictionaries, but at times less pronounced. For instance
the WVD using FOFs exhibits sharper onsets than can be pro-
vided by symmetric Gabor atoms.

It may be surprising that even with such large differences
between the two TFDs, the reconstructions sound the same.
Though the WVD doesn’t match the STFT, when the signal
is reconstructed the atoms interfere in just the right ways to
create silences, such as that pointed to by (1).

4. CONCLUSIONS

We have experimentally compared the performance of five
different dictionaries for non-orthogonal MPDs of four non-
noisy speech signals. It has been shown that the performance
of dictionaries containing Gabor atoms work sufficiently well
at representing the signal energy. These decompositions re-
quire on average 1000 aps less than decompositions using ex-
ponential atoms at a residual energy of about -50 dB. Further-
more, diversifying the dictionary with FOF atoms reduces the
aps required for the same residual energy by only 250. Each
dictionary except for the exponential gave a residual energy
decay rate of around -8 dB per 1000 aps.

Summing the WVD of individual atoms to visualize the
TFD of a signal might be misleading. Not only can fine
frequency structures disappear, but energy is shown where
none exists in the signal. These problems however can be ad-
dressed by using more diverse dictionaries (e.g. chirps), using
modified MP algorithms, such as the high resolution MP [3],
or quite simply modifying the image using the energy enve-
lope of the signal.

Though MP aims at finding sparser representations of sig-
nals, it does so at the price of convergence, efficiency, and ac-
curacy in the frequency domain, for each of the dictionaries
tested. For nearly transparent reconstructions of these speech
signals at 8 kHz, requiring 3000 aps, this implies a rather low
average sparsity of about 0.375 atoms per sample. Structures
of speech, such as band-limited shaped noise, become masses
of atoms each having center times, durations, amplitudes, fre-
quencies, and phases–in short an unnecessary explosion of
data.

Further directions of research will include comparing dif-
ferent decomposition strategies, e.g. windowed analysis,atoms
plus noise; applying psychoacoustic principles to streamline
the algorithm and results; determining the sensitivity of each
atom parameter on the reconstruction; and specializing the
dictionary for representing speech.
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Fig. 4. The WVD of the decomposition using Gabor atoms (middle), and narrowband STFT (bottom), are shown for “speech
1” with voiced/unvoiced profile (top). Sentence is: “I triedto change the subject by asking Lilly if she knew the truth about
alfalfa sprouts.” Arrows are discussed in text.
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