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Abstract—We consider strategies for the lossy transmission of
a zero mean Gaussian source over multiple channels. In one
strategy, we employ single description coding of the source and
duplicate this description over two independent channels. We also
consider optimal, no excess joint rate, and no excess marginal
rate multiple description coding over two independent channels.
These strategies are compared to the traditional approach where
a single description is sent over a single channel. The performance
measure used for comparison is expected distortion at the
receiver, evaluated as a function of the outage probability. We
also consider the transmission of a full rate single description
over a standard 2X2 MIMO channel using spatial multiplexing
and a time-sharing approach to using MD coding over a 2X2
MIMO channel.

I. INTRODUCTION

In a 2X2 MIMO system we have a total of 4 channels,
one for each transmit/receive antenna pair [1]. However, to
begin the discussion we assume a simplified system where
the cross channels are not present, so that we are considering
two parallel, independent channels. Four different strategies
are used for the transmission of a zero mean gaussian source
over this system, employing single and multiple description
coding.

The first strategy is called duplicate single description
coding (DSD). It consists in representing the source with a
single description code of rate RDSD and duplicating this
description over the two transmit antennas.

The remaining strategies employ different types of multiple
description coding, all having the same joint description rate
RMD. These strategies are, namely, no excess marginal rate
(MD-NMR), no excess joint rate (MD-NJR) and optimal
MD coding (MD-OPT) [2]. We also consider the traditional
approach (SD), where a single description code of rate RSD

is sent over a single channel.
We compare these strategies using mean squared error

distortion at the receiver evaluated as a function of outage
probability, defined as the probability of having one channel
in outage.
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Finally, we consider two MIMO strategies, one using spatial
multiplexing and a single description source code and the other
using a time-sharing approach and the MD codes.

II. PARALLEL CHANNEL STRATEGIES

A. Assumptions and preliminaries

We begin our development by considering the special case
of parallel, independent channels.

All the variances and bandwidths are assumed to be normal-
ized to unity. Both channels are assumed to be random, with
very slow Rayleigh fading and are represented by complex
gains h1 and h2. Thus, the hi are i.i.d. zero mean complex
Gaussian random variables which remain constant over the
transmission of a large number of symbols.

Channel state information (CSI) is assumed not to be
available at the transmitter, i.e. the transmitter does not have
any knowledge of the hi except for their statistical distribution.

Each antenna transmits with equal power P̂ /2, such that
the total transmitted power is equal to P̂ . The average power
received by each receive antenna is equal to P/2. The noise
at the receiver is assumed to be i.i.d. AWGN noise, with the
same average power N at each receive antenna.

The average signal to noise ratio (SNR) at the i-th receive
antenna is then equal to

γ̄i =
P

2N
=
γ̄

2
where γ̄ = P/N , and the instantaneous SNR is given by [3]

γi = ‖hi‖2γ̄i = ‖hi‖2
γ̄

2
(1)

The instantaneous capacity Ci of i-th channel is thus [1]

Ci = log2

(
1 + γi

)
= log2

(
1 + ‖hi‖2

γ̄

2

)
which results in a random variable due to its dependence on
hi.

Given a design parameter called outage probability (Pout),
the value of capacity that is achieved on the i-th channel with
probability equal to 1 − Pout is called outage capacity C(i)

out

[4]

Pout = Pr{Ci < C
(i)
out} (2)

= Pr
{

log2

(
1 + ‖hi‖2

γ̄

2

)
< C

(i)
out

}



In our case, since the hi are identically distributed, the outage
capacities of the two channels for the same Pout are identical

C
(1)
out = C

(2)
out = Cout (3)

and
Pout = Pr{Ci < Cout}

Given a value for Pout, each antenna will then transmit at a
constant rate equal to Cout [5]. Pout represents the probability
of having a channel in outage, i.e. the received symbols from
the respective channel cannot be decoded with probability 1,
simply because its capacity is lower than the transmitted rate.

If we write Cout as [1]

Cout = log2(1 + γmin) (4)

from Equations (2), (3) and (1) we get

Pout = Pr{γi < γmin}

Thus, γmin is the minimum SNR required at one receive
antenna for having the corresponding channel not in outage
[5]. Since the hi are Gaussian distributed, it results that [6]

Pout = 1− e−2
γmin
γ̄

and
γmin = − γ̄ log(1− Pout)

2
(5)

B. Duplicate Single Description

In this strategy, the same single description code of rate
RDSD is transmitted over the two independent channels.

Given Pout, the transmitted rate on each channel is given
by Equations (4) and (5)

RDSD = log2

[
1− γ̄ log(1− Pout)

2

]
In the case of either no outage on both channels or outage

on only one of the two channels, the receiver will observe a
distortion equal to [7]

D1 = 2−2RDSD (6)

When both links are in outage the distortion observed by the
receiver is 1.

The expected distortion is then given by

D = (1− Pout)2D1 + 2Pout(1− Pout)D1 + P 2
out

= (1− P 2
out)D1 + P 2

out

C. Multiple Description

In this strategy we use multiple description coding to
obtain two different descriptions of the source, which are
independently sent over the two channels.

The MD encoder has joint rate equal to RMD, so each
description has rate RMD/2. Similarly to the DSD case, the
transmitted rate on each channel is chosen to be equal to the
outage capacity at a given Pout

RMD

2
= log2

[
1− γ̄ log(1− Pout)

2

]

When both channels are not in outage, the MD decoder
can reconstruct the source from both descriptions, achieving
a distortion equal to D0. If only one of the two channels is
available, the MD decoder can reconstruct the source from the
only description received, achieving a higher distortion D1.

The expected distortion has the following expression

D = (1− Pout)2D0 + 2Pout(1− Pout)D1 + P 2
out (7)

The relations between D0, D1 and RMD can be obtained
from the following proposition [8].

Proposition 1. Let an i.i.d. Gaussian source with unit variance
be described by two descriptions both of which have rate
RMD/2. The distortions D1 and D0 corresponding to obser-
vations of one or both descriptions. The achievable distortion
region for a fixed rate RMD/2 is described by:

D0 ≥ 2−2RMD

D1 ≥ 2−RMD(
D0, D1

)
≥

(
a,

1 + a

2
− 1− a

2

√
1− 2−2RMD

a

)

for a ∈
[
2−2RMD , 2−RMD

2−2−RMD

]
.

From Proposition 1 we can obtain three different types of
MD coders [2], each with different performance.

1) No Excess Marginal Rate (MD-NMR). In this type of
MD coder, the two individual descriptions are chosen to
be rate distortion optimal, with distortion

D1 = 2−RMD (8)

From Proposition 1 we get the following lower bound
on distortion D0

D0 ≥
2−RMD

2− 2−RMD
(9)

Using these expressions in Equation (7), we get the
desired results.

2) No Excess Joint Rate (MD-NJR). In this type of MD
coder the joint description is rate distortion optimal, with
distortion

D0 = 2−2RMD (10)

The lower bound on distortion D1 can be obtained again
from Proposition 1 and results

D1 ≥
1
2

(
1 + 2−2RMD

)
(11)

Substituting these expressions into Equation (7) we get
the results.

3) Optimal MD coding (MD-OPT). In this case the MD
coder appropriately chooses the values of D0 and D1 to
minimize the expected distortion D. From Equation (7)



and Proposition 1 we can write D as

D=(1− Pout)2a

+2Pout(1− Pout)

(
1 + a

2
− 1− a

2

√
1− 2−2RMD

a

)
+P 2

out (12)

Given Pout, the MD-OPT coder chooses the value of a
that minimizes D in Equation (12).

D. Single Description

Here we consider the traditional strategy in which a single
description code of rate RSD is transmitted over a single
link. In order to make a fair comparison, we assume that the
transmit antenna transmits with power P̂ , equal to the total
transmitted power of the previous cases. Under this assump-
tion, the average received power from the single antenna is P
and the average received SNR is equal to γ̄. The instantaneous
channel capacity is then given by [1]

C = log2(1 + ‖h‖2γ̄)

Individual channel outage probability can be obtained sim-
ilarly to before and results [5]

Pout = 1− e−
γmin
γ̄

and [5]
γmin = −γ̄ log(1− Pout)

Given Pout, the transmitted rate RSD is then [5]

RSD = log2

[
1− γ̄ log(1− Pout)

]
and distortion D1, achieved when the channel is not in outage,
results [7]

D1 = 2−2RSD

The expected distortion is [5]

D = (1− Pout)D1 + Pout (13)

E. Discussion

The expected distortions achievable with the different strate-
gies at a fixed γ̄ of 10 dB as a function of outage probability
are plotted in Figure 1. Figure 2 plots the coding rates at a
fixed γ̄ of 10 dB as a function of outage probability.

As expected, MD-OPT performs better at all probabilities,
since it is designed to minimize expected distortion.

At low values for Pout, we can see that MD-OPT and MD-
NJR have similar performance, MD-NMR and SD perform
slightly worse, and DSD has the worst performance. This
happens because the receiver is able to correctly decode
both descriptions most of the time: since MD-NJR minimizes
the joint description distortion (D0), it delivers performance
almost equivalent to the optimal coder. MD-NMR performs
slightly worse because it is designed to minimize the indi-
vidual description distortion (D1), which leads to suboptimal
values for D0. DSD has worse performance than MD-NMR
because it duplicates the same description of rate RDSD and
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Fig. 1. Expected distortion vs. outage probability for the different strategies
with γ̄ = 10 dB.
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Fig. 2. Coding rates vs. outage probability with γ̄ = 10 dB.

does not provide any gain when receiving both descriptions.
Both DSD and MD-NMR have optimal individual descrip-
tions, so the gap between them can be exclusively attributed to
the capacity of MD-NMR to gain an advantage when receiving
both descriptions. SD performs better than DSD because the
channel outages are rare. In this case, using a single antenna
that transmits at full power allowing higher rates brings lower
distortions than duplicating a lower rate description over two
reliable channels.

As Pout gets higher, SD and MD-NJR obtain worse per-
formance and MD-NMR approaches MD-OPT. In this case
the receiver decodes correctly only one description most of
the time, so optimal performance is achieved with the MD-
NMR coder, which minimizes D1. DSD has slightly worse
performance because, once again, it does not provide any gain
when receiving both descriptions. Since this event now hap-



pens with lower probability, the gap between DSD and MD-
NMR is reduced with respect to before. The poor performance
of MD-NJR is simply due to the fact that this coder is designed
to minimize D0, while the even poorer performance of SD is
due to the unreliability of the single channel.

At high values for Pout, the gap between DSD and MD-
NMR gets very small and both strategies show optimal per-
formance. This happens because the probability of receiving
both descriptions is now very small.

MD-NJR performs significantly worse and has performance
equivalent to SD. This last behavior can be explained by
looking at Equation (7) and substituting into it the expressions
of D0 and D1 for MD-NJR to get

D = (1− Pout)2−2RMD + Pout (14)

which clearly shows that MD-NJR is equivalent to a SD
scheme with rate RMD. Since RMD > RSD, MD-NJR pro-
vides in general better performance than SD. When Pout gets
sufficiently high, the second term on the RHS of Equations
(13) and (14) dominates and both strategies show similar
performance.

III. MIMO STRATEGIES

We now consider a 2X2 MIMO system characterized by the
channel matrix H , where each entry hij represents the channel
gains between i-th receive antenna and j-th transmit antenna.
The same assumptions of the previous section are valid also
here so, in particular, the hij are i.i.d. zero mean complex
Gaussian random variables.

We compare two different strategies for transmission of the
same Gaussian source over this system. These strategies are
Spatial Multiplexing (SM), which is used for transmitting a
single description of the source, and Time Sharing (TS), which
is used for transmitting a multiple description of the source.

A. Spatial Multiplexing
In the SM strategy, a SD code of rate RSM from the SD

coder is demultiplexed and coded into two independent half-
rate substreams, which are sent over the two transmit antennas.
At the receiver proper signal processing is done to recover the
original full-rate stream.

The instantaneous capacity achievable with this strategy is
given by [9]

C = log2 det
[
I2 +

γ̄

2
HHH

]
(15)

where I2 is the 2X2 identity matrix and HH denotes the
conjugate transpose of H . In a similar way as before, given a
value for Pout the SD coder encodes the source using a rate
RSM such that Pr{C < RSM} = Pout.

When the system is not in outage, the receiver observes a
distortion D1 equal to

D1 = 2−2RSM

and the expected normalized distortion results

D = (1− Pout)D1 + Pout

which is plotted in Figure 3.
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Fig. 3. Expected distortion vs. outage probability for SM with different
values of γ̄.

B. Time Sharing

With the TS strategy, two different symbols are transmitted
over the two transmit antennas in two consecutive time slots. In
each time slot only one antenna is transmitting, while the other
is off. At the receiver a Maximal Ratio Combiner (MRC) [1]
is used for combining the two signals received by the receive
antennas in the same time slot. Thus, the TS technique yields
two independent channels of gains |h11|2+|h21|2 and |h12|2+
|h22|2 which can be used for MD or DSD.1

The instantaneous capacity Cj of j-th channel is thus [1]

Cj =
1
2

log2

(
1 + γ̄

2∑
i=1

|hij |2
)

where the term 1/2 arises because each channel is used only
half the time.

Each description has the same rate RTS/2 which is chosen,
given Pout, such that

Pr
{
Cj <

RTS

2

}
= Pout

As in the previous section, the MD-OPT coder chooses the
values of D0 and D1 to minimize the expected distortion D,
whose expression is given by Equation (12) in which RTS is
used instead of RMD. The expected distortion is plotted in
Figure 4.

C. Discussion

Figure 5 plots the expected distortions for SM and TS strate-
gies at a fixed γ̄ of 10 dB as a function of outage probability.
Expected distortion for MD-OPT strategy is also plotted, for
a comparison between MIMO strategies and parallel channel
strategies.

As can be seen, at very low values for Pout the SM
strategy achieves the best performance. As Pout gets higher,

1For brevity, here we consider only the optimal MD coder.
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Fig. 4. Expected distortion vs. outage probability for TS with different values
of γ̄.
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Fig. 5. Expected distortion vs. outage probability for various strategies with
γ̄ = 10 dB.

performance of SM rapidly worsens and TS obtains the best
performance. As expected it turns out that, at least for useful
values of Pout, both MIMO strategies outperform parallel
channel strategy, suggesting that MIMO systems could be
effectively used for achieving lower distortions.

It is interesting to observe that the SM strategy achieves its
lowest distortions only for a very small range of values of Pout,
while TS achieves its lowest distortions for a significantly
higher range of values of Pout.

IV. CONCLUSIONS

We considered the lossy transmission of a Gaussian source
over independent, parallel channels and a 2X2 MIMO channel.
We evaluated mean squared error distortion at the receiver
for duplicate single description coding and optimal, no excess
joint rate and no excess marginal rate over a simplified

system consisting of two parallel and independent channels.
We compared these strategies to the traditional approach using
single description coding over a single channel. We showed
that using source coding diversity can significantly improve
performance and that, if carefully chosen, multiple description
coding can provide lower distortion with respect to duplicate
single description coding.

We also compared two different strategies for transmission
of the same Gaussian source over a standard 2X2 MIMO
system. These strategies are Spatial Multiplexing (SM), which
is used for transmitting a single description of the source, and
Time Sharing (TS), which is used for transmitting a multiple
description representation of the source. Results suggest that
MIMO systems can provide noticeably lower distortions than
parallel and independent channels.
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