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Abstract—We revisit the classic problem of developing a spatial
correlation model for natural images and videos by proposing a
conditional correlation model for relatively nearby pixels that is
dependent upon five parameters. The conditioning is on local
texture and the optimal parameters can be calculated for a
specific image or video with a mean absolute error (MAE) usually
smaller than 5%. We use this conditional correlation model to
calculate the conditional rate distortion function when universal
side information on local texture is available at both the encoder
and the decoder. We demonstrate that this side information, when
available, can save as much as 1 bit per pixel for selected videos
at low distortions. We further study the scenario when the video
frame is processed in macroblocks (MBs) or smaller blocks and
calculate the rate distortion bound when the texture information
is coded losslessly and optimal predictive coding is utilized to
partially incorporate the correlation between the neighboring
MBs or blocks. These rate distortion bounds are compared to
the operational rate distortion functions generated in intra-frame
coding using the AVC/H.264 video coding standard.

I. INTRODUCTION

Parsimonious statistical models of natural images and
videos can be used to calculate the rate distortion functions
of these sources as well as to optimize particular image and
video compression methods. Although they have been studied
extensively, the statistical models and their corresponding rate
distortion theories are falling behind the fast advancing image
and video compression schemes.

The research on statistically modeling the pixel values
within one image goes back to the 1970s when two correlation
functions were studied [1], [2]. Both correlation functions
assume a Gaussian distribution of zero mean and a constant
variance for the pixel values and treat the correlation between
two pixels within an image as dependent only on their spatial
offsets. These two correlation models for natural images were
effective in providing insights into image coding and analysis.
However they are so simple that, as shown later in this
paper, the rate distortion bounds calculated based on them
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are actually much higher than the operational rate distortion
curves of the current intra-frame video coding schemes. For
the same reason, more recent rate distortion theory work on
video coding such as [3], [4] that adopt these two spatial
correlation models have limited applicability.

Due to the difficulty of modeling the correlation among the
pixel values in natural image and video sources, studying their
rate distortion bounds is often considered infeasible [5]. As a
result, in the past two decades, the emphasis of rate distortion
analysis has been on setting up operational models for practical
image/video compression systems to realize rate control [6]–
[12] and to implement quality optimization algorithms [5],
[13]–[16]. For example, a very popular such model treats the
discrete cosine transform (DCT) coefficients in the predicted
frames of a video sequence as uncorrelated Laplacian random
variables [17], [18] so that the coding bit rate R and recon-
struction distortion D can be expressed as simple functions
of the quantization parameter q. Other popular operational
rate and distortion models include those proposed in [10]–
[12], [15], [19]–[22] that do not consider packet loss over
communication networks and those proposed in [16], [23]–
[27] that do take into account possible packet loss over the
networks. These operational rate and distortion models are
derived for specific coding schemes, and therefore, they cannot
be utilized to derive the rate distortion bound of videos.

In this paper we address the difficult task of modeling the
correlation in video sources by proposing a new correlation
model for two close pixels in one frame of digitized natural
video sequences that is conditional on the local texture. This
new correlation model is dependent upon five parameters
whose optimal values are calculated for a specific image or
video. The new correlation model is simple, but it performs
very well, as strong agreement is discovered between the
approximate correlation coefficients (as defined in Eq. (III.4))
and the correlation coefficients calculated by the new correla-
tion model, with a mean absolute error (MAE) usually smaller
than 5%.

With the new block-based local-texture-dependent correla-
tion model, we first study the marginal rate distortion functions
of the different local textures. These marginal rate distortion
functions are shown to be quite distinct from each other.
Classical results in information theory are utilized to derive
the conditional rate distortion function when the universal side
information of local textures is available at both the encoder



and the decoder. We demonstrate that by involving this side
information, the lowest rate that is theoretically achievable
in intra-frame video compression can be as much as 1 bit
per pixel lower than that without the side information. This
rate distortion bound with local texture information taken into
account while making no assumptions on coding, is shown
indeed to be a valid lower bound with respect to the operational
rate distortion curves of intra-frame coding in AVC/H.264.

The incorporation of the new correlation model into existing
models of practical image/video compression systems is also
promising. We demonstrate this by studying the common
“blocking” scheme used in most video compression standards
[28]–[31], which divides a video frame into 16 × 16 mac-
roblocks (MB) or smaller blocks before processing. With the
block based nature of the new correlation model, we study
the penalty paid in average rate when the correlation among
the neighboring MBs or blocks is disregarded completely or
is incorporated partially through predictive coding. A rate
distortion bound is calculated for the scenario when the texture
information is coded losslessly and optimal predictive coding
is employed. This lower bound is shown to be reasonably tight
with respect to the operational rate distortion curves of intra-
frame coding in AVC/H.264. Furthermore, it is near linear
in terms of average bit rate per pixel versus PSNR of a video
frame and therefore can easily be utilized in future video codec
designs.

The correlation model and the rate distortion bounds pro-
posed in this paper only deal with the pixels within one frame
of a video. The model needs to be expanded to modeling the
correlation of the pixels that are located in different video
frames. This is currently under investigation and recent results
show promise when a single temporal correlation coefficient
is introduced for every two frames [32]. This local texture de-
pendent correlation model and its corresponding rate distortion
bounds are a significant step toward obtaining rate distortion
bounds for video compression, which has seen few new results
in the last twenty years. In the meantime, the intra-frame
coding modes in video compression and some applications
that only use intra-coded frames, such as digital cinema and
low frame rate surveillance cameras, can exploit these new
results directly.

The remainder of this paper is organized as follows. In
Section II we review the existing statistical models of natural
images and videos, as well as the rate and distortion analysis
of practical video compression systems in the literature. In
Section III we propose the novel new correlation model based
on local texture. In Section IV we study the marginal rate
distortion bounds of different local textures and derive the
theoretical rate distortion bound with the local texture as the
side information. In Section V we derive the rate distortion
bounds for the “blocking” scheme that is commonly used in
video coding, with or without prediction across the blocks.
These various rate distortion bounds are compared to the
operational rate distortion curves of intra-frame coding in
AVC/H.264 in Section VI. We conclude this paper and provide
insights into future research in Section VII.

II. EXISTING STATISTICAL MODELS

1) Statistical models of images and videos: The research
on statistically modeling the pixel values within one image
goes back to the 1970s when two correlation functions were
studied. Both assume a Gaussian distribution of zero mean and
a constant variance for the pixel values.

The first correlation model is

ρ(∆i,∆j) = e(−α|∆i|−β|∆j|), (II.1)

with ∆i and ∆j denoting offsets in horizontal and vertical
coordinates. The parameters α and β control the correlation
in the horizontal and vertical directions, respectively, and their
values can be chosen for different images [1]. The separability
in spatial coordinates in this correlation model facilitates the
analysis of the two-dimensional rate distortion behavior of
images using the one-dimensional Karhunen Lòeve transform
(KLT).

The second correlation model is an isotropic function

ρ(∆i,∆j) = e−α
√

∆i2+∆j2
. (II.2)

This model implies that the correlation between two pixels
within an image depends only on the Euclidean distance
between them [2]. The major advantage of this model is that
it has a closed-form two-dimensional Fourier transform and
therefore leads to a closed-form rate function and distortion
function on a common parameter.

These two correlation models for natural images are simple
yet effective in providing insights into image coding and
analysis. However image and video coding schemes have
advanced significantly and a rate distortion theory that is
relevant to these more sophisticated methods is needed.

Let X(i, j) denote the pixel value at the ith row and
the jth column of a digitized image, and let M and N
denote the numbers of rows and columns in the image. The
approximate correlation coefficient ρ̂(∆i,∆j) of this image
can be expressed as

ρ̂(∆i,∆j) =

∑
[X(i,j)X(i+∆i,j+∆j)]√∑

[X2(i,j)]
∑

[X2(i+∆i,j+∆j)]

(M − ∆i)(N − ∆j)
, (II.3)

for 0 ≤ ∆i ≤ M − 1, 0 ≤ ∆j ≤ N − 1. The summations
in (II.3) are taken over all pixels whose coordinates satisfy
0 ≤ i ≤ M − 1 − ∆i, 0 ≤ j ≤ N − 1 − ∆j. Fig.
1 plots the approximate correlation coefficients ρ̂(∆i,∆j)
of two digitized natural images, selected from two digitized
natural video sequences, paris.cif and football.cif, respectively.
We can see in Fig. 1 that when ∆i and ∆j are larger
than 50, which is still much smaller than the image size we
encounter in present applications, for example 352×288 in this
figure, the approximate correlation coefficients ρ̂(∆i,∆j) are
rather and neither of the two correlation functions can model
this behavior. Correspondingly, the rate distortion analysis of
natural images based on these two correlation functions will
be inaccurate. This is confirmed later in this paper as the rate
distortion bounds calculated based on these two correlation



functions are shown to be actually much higher than the
operational rate distortion curves of the current intra-frame
video coding schemes.

(a) paris.cif

(b) football.cif

Fig. 1. The approximate correlation coefficient ρ̂(∆i, ∆j) of two digitized
natural images

For the same reason, more recent rate distortion theory work
for videos, such as [3], [4], [33] that adopt these two spatial
correlation models, is limited in scope. For example, In [4],
[33], distortion-rate performance is analyzed by deriving the
power spectral density of the prediction error with respect
to the probability density function of the displacement error.
This is shown, however, to be incapable of describing, with
sufficient accuracy, the measured distortion-rate performance
of a typical video encoder [23].

2) Statistical models of practical video compression sys-
tems: Researchers working on video compression also have
developed statistical models of images in the transformed
domain. The most popular among them treats the discrete
cosine transform (DCT) coefficients in the predicted frames of
a video sequence as uncorrelated Laplacian random variables
[17], [18]. If we use the absolute magnitude distortion measure
d(x, x̂) = |x−x̂|, there is a closed form rate distortion function
for the memoryless Laplacian source that can be expanded into
a Taylor series and approximated by R(D) ∼= aq−1 + bq−2.

In this formula, the distortion is measured by the average
quantization scale q used in the frame.

This quadratic rate distortion function is the foundation
of the rate control schemes [6]–[8] that are adopted by the
international video coding standards, such as ISO MPEG-
2/4 [28], [29] and ITU-T H.263 [30]. In these rate control
schemes, the quantization stepsizes, which are indexed by the
quantization parameters (QPs), are chosen optimally based
on the quadratic rate distortion function, number of bits left
to consume and the approximate coding complexity. The
bits spent coding the other syntax elements, considered to
be mainly the motion vectors, are monitored and predicted
through simple linear or nonlinear functions.

The memoryless Laplacian model for DCT coefficients
becomes less appropriate, even for practical video compres-
sion system design purposes, since the emergence of new
coding standards such as AVC/H.264. The new schemes and
refinements in AVC/H.264 [34] reduce the applicability of
the memoryless Laplacian model of the DCT coefficients for
at least two reasons. First, with all the options offered in
the codecs and the very small processed block sizes, the
majority of the bandwidth is very likely to be allocated to
transmit the coding parameters and the motion vectors of each
block rather than the DCT coefficients, especially in the low
to medium bit rate applications. Since the Laplacian model
only treats the DCT coefficients, it becomes insufficient to
represent the information in the video source. Second and
more importantly, these coding options and parameters are to
be chosen, in an optimal way if possible, before the DCT
or DCT-like transforms can be applied to the residue block.
This is considered as a rate distortion optimization problem
and the most popular solution to this problem is to conduct
the optimization with a fixed quantization parameter. However,
from the perspective of rate control, the quantization parameter
is to be optimally chosen based on the residue data after the
rate distortion optimization is performed. Therefore there is
a “chicken and egg” dilemma artificially caused by modeling
the statistics in the transformed domain that has prevented a
global optimum from being obtained, even for a specific codec
[9], [12], [35].

Two recently proposed schemes following in the same vein
[9], [35] try to tackle this dilemma by either engaging a “two
pass scheme” or defining a “basic unit”. This is an ongoing
research direction and for more recent activities please refer
to [12]. Another recent work on rate distortion modeling for
H.264 [15] treats the residue blocks after intra/inter prediction
in the spatial domain as Laplacian random vectors with
separable correlation coefficients that depend only on one a
priori parameter. The statistics in the spatial domain are then
used to calculate rate distortion models in the transformed
domain. Even though this work also studies the statistics
in the spatial domain of videos, it relies on a very simple
model of the residue block, and therefore does not address the
interdependence between the rate control and rate distortion
optimization.

In summary, a new statistical correlation model for digitized



natural videos is much needed in both theory and application.
This correlation model should be independent of any coding
schemes, rather than modeling the processed values, such
as the DCT coefficients, in a coding scheme, so that the
theoretical rate distortion bounds can be derived to predict the
fundamental limit on the number of bits (per pixel) needed
to represent a video at a given distortion level. This corre-
lation model should also be more sophisticated than the old
correlation models in Eqs. (II.1) and (II.2) so that the derived
theoretical rate distortion bounds are valid. It will be a plus
if this correlation model has a simple form with parameters
that can be calculated for a specific video, which makes the
incorporation of the correlation model into a practical video
codec design and evaluation possible. In the next section we
propose such a correlation model.

III. DEFINITION OF BLOCK-BASED CONDITIONAL

CORRELATION MODEL

In this section we propose a new correlation model for
a digitized natural image or an image frame in a digitized
natural video. We assume that all pixel values within one
natural image form a two dimensional Gaussian random vector
with memory, and each pixel value is of zero mean and
the same variance σ2. From the discussion in Section II-1,
we know that to study the correlation between two pixel
values within one natural image, these two pixels should be
located close to each other compared to the size of the image.
Also for a sophisticated correlation model, the correlation
between two pixel values should not only depend on the spatial
offsets between these two pixels but also on the other pixels
surrounding them.

Intra-frame prediction is a new feature in AVC/H.264 which
removes, to a certain extent, the spatial redundancy in neigh-
boring 4×4 blocks or 16×16 macroblocks (MBs). If a block
or MB is encoded in intra-mode, a prediction block is formed
based on previously encoded and reconstructed surrounding
pixels. The prediction block P is then subtracted from the
current block prior to encoding. For the luminance samples,
P may be formed for a 4 × 4 block or for a 16 × 16 MB.
There are a total of nine optional prediction modes for each
4 × 4 luminance block as shown in Fig. 2 and four optional
prediction modes (mode 0 to 3 in Fig. 2) for each 16 × 16
luminance MB.

To quantify the effect of the surrounding pixels on the
correlation between pixels of interest, we utilize the concept
of local texture, which is simplified as local orientation, i.e.,
the axis along which the luminance values of all pixels in
a local neighborhood have the minimum variance. The local
texture is similar to the intra-prediction modes in AVC/H.264,
but with a generalized block size and a arbitrary number of
total textures. To calculate the local texture of a block, we
also employ the pixels on the top and to the left of this block
as surrounding pixels. However we use the original values of
these surrounding pixels rather than the previously encoded
and reconstructed values used in intra-frame prediction of
AVC/H.264. The block can have any rectangular shape as

Fig. 2. The intra-prediction modes for 4 × 4 blocks in AVC/H.264 [34]

long as its size is small compared to the size of the image.
The local textures need not to be restricted to those defined in
AVC/H.264. For example, in Fig. 3, the numbered arrows rep-
resent a few local textures that are defined as intra-prediction
modes in AVC/H.264 and the unnumbered arrows represent
a few local textures that are not defined as intra-prediction
modes in AVC/H.264. Once the block size and the available
local textures are fixed, the local texture of the current block
is chosen as the one that minimizes the mean absolute error
(MAE) between the original block and the prediction block
constructed based on the surrounding pixels and the available
local textures. It is important to point out that even through we
choose a very simple and computationally inexpensive way to
calculate the local texture, there are other, more sophisticated
schemes of doing so, as summarized in [36], which should
produce even better results in rate distortion modeling.

Fig. 3. The numbered arrows represent a few local textures that are defined as
intra-prediction modes in AVC/H.264 and the unnumbered arrows represent a
few local textures that are not defined as intra-prediction modes in AVC/H.264

The local texture reveals which one, out of the different
available local textures, is the most similar to the texture
of the current block. It is reasonable to conjecture that the
difference in local texture also affects the correlation between
two close pixels within one video frame. To confirm this we
first calculate the approximate correlation coefficient between
one block of size M×N , and another nearby block of the same



size, shifted by ∆i vertically and ∆j horizontally, according
to the following formula

ρ̂(∆i,∆j) =
1

MN

∑

[X(i, j)X(i + ∆i, j + ∆j)]
√

∑

[X2(i, j)]
∑

[X2(i + ∆i, j + ∆j)]
,

(III.4)

for −I ≤ ∆i ≤ I , −J ≤ ∆j ≤ J . This formula is similar to
Eq. (II.3), except that 1) M × N is not the size of a whole
image, but the size of block, usually much smaller than the
image size; 2) the ranges for ∆i and ∆j are different and need
not be smaller than M and N . ρ̂(∆i,∆j) is first calculated for
each M×N block in an image frame. Then they are averaged
among the blocks that have the same local texture. We denote
this average approximate correlation coefficient for each local
texture as ρ̂(∆i,∆j|y) where y denotes the local texture.

In Figs. 4(a) and 4(b), we plot ρ̂(∆i,∆j|y) (shown in the
figures as the loose surfaces, i.e., the mesh surfaces that look
lighter with fewer data points ) for the first frames from
paris.cif and football.cif, respectively. The dense surfaces, i.e.,
the mesh surfaces that look darker with more data points,
are the correlation coefficients calculated using the proposed
conditional correlation model, which will be discussed later
in this section. The block size is M = N = 4. The available
nine local textures are chosen to be those plotted in Fig. 2.
We set ∆i and ∆j to be very small, ranging from -7 to 7, to
concentrate on the dependence of the statistics on local texture
in an image frame. Fig. 4 shows that the average approximate
correlation coefficient ρ̂(∆i,∆j|y) is very different for the
blocks with different local textures. If we average ρ̂(∆i,∆j|y)
across all the blocks in the picture, we get what is shown in
Fig. 1 in the corresponding region of ∆i and ∆j, but the
important information about the local texture is lost. Not sur-
prisingly ρ̂(∆i,∆j|y) demonstrates certain shapes that agree
with the orientation of the local textures. It is also interesting
that although the average approximate correlation coefficients
of the same local texture in both images demonstrate similar
shapes their actual values are quite different.

Motivated by these observations, in the following we present
the formal definition of the new correlation coefficient model
that is dependent on the local texture.

Definition 3.1: The correlation coefficient of two pixel
values with spatial offsets ∆i and ∆j within a digitized natural
image or an image frame in a digitized natural video is defined
as

ρ(∆i,∆j|Y1 = y1, Y2 = y2) =
ρ(∆i,∆j|y1) + ρ(∆i,∆j|y2)

2
,

(III.5)where
ρ(∆i,∆j|y) = a(y) + b(y)e−|α(y)∆i+β(y)∆j|γ(y)

. (III.6)

Y1 and Y2 are the local textures of the blocks the two pixels are
located in, and the parameters a, b, α, β and γ are functions
of the local texture Y . Furthermore we restrict b(y) ≥ 0 and
a(y) + b(y) ≤ 1.

(a) paris.cif

(b) football.cif

Fig. 4. The loose surfaces (the mesh surfaces that look lighter with less data
points) are ρ̂(∆i, ∆j|y), the approximate correlation coefficients of two pixel
values in the first frame from paris.cif and football.cif respectively, averaged
among the blocks that have the same local texture; the dense surfaces (the
mesh surfaces that look darker with more data points) are ρ(∆i,∆j|y), the
correlation coefficients calculated using the proposed conditional correlation
model, along with the optimal set of parameters

This definition satisfies ρ(∆i,∆j|Y1 = y1, Y2 = y2) =
ρ(−∆i,−∆j|Y1 = y1, Y2 = y2). To satisfy the other
restrictions for a function to be a correlation function:
ρ(∆i,∆j|Y1 = y1, Y2 = y2) ∈ [−1, 1] and ρ(0, 0|Y1 =
y1, Y2 = y2) = 1, we need a(y) + b(y) = 1 and a(y) ≥ −1.
In order for the correlation model to approximate as closely
as possible the average correlation coefficients in an video,
we loosen the requirement a(y) + b(y) = 1 to b(y) ≥ 0 and
a(y) + b(y) ≤ 1.

This new correlation model discriminates different local
textures. As the spatial offsets between the two pixels, ∆i
and ∆j, increase, ρ(∆i,∆j|Y1 = y1, Y2 = y2) decreases at a
different speed depending on the five parameters a, b, α, β and
γ, which will be shown to be quite different for different local



textures. For each local texture, we choose the combination of
the five parameters that jointly minimizes the MAE between
the approximate correlation coefficients, averaged among all
the blocks in a video frame that have the same local texture,
i.e., ρ̂(∆i,∆j|y), and the correlation coefficients calculated
using the new model, ρ(∆i,∆j|y). These optimal parameters
for one frame in Paris.cif and Football.cif and their corre-
sponding MAEs are presented in Table I. (The local textures
are calculated for each one of the 4 by 4 blocks; the available
nine local textures are chosen to be those plotted in Fig. 2; ∆i
and ∆j range from −7 to 7.) We can see from this table that
the parameters associated with the new model are quite distinct
for different local textures while the MAE is always less than
0.05. The values of all five parameters are also different for
the two videos. In Fig. 4 we plot ρ(∆i,∆j|y) of all the local
textures for the same images from paris.cif and football.cif
using these optimal parameters (as the dense surfaces, i.e.,
the mesh surface with more data points). We can see that the
new spatial correlation model does capture the dependence
of the correlation on the local texture and fits the average
approximate correlation coefficients ρ̂(∆i,∆j|y) very well.

The parameters a, b, α, β and γ should have different
optimal values when the block size used to calculate the local
texture is different. Generally speaking, when the available
local textures are fixed, the larger the block size, the less
the actual average correlation coefficients should agree with
the shape designated by the local texture. What also matters
are the ranges of spatial offsets ∆i and ∆j over which the
MAE between ρ̂(∆i,∆j|y) and ρ(∆i,∆j|y) is calculated.
The larger the range of spatial offsets, the more average
correlation coefficients the model needs to approximate which
will normally yield a larger MAE. These two aspects are
shown in Fig. 5 for four different videos. As we can see
in Fig. 5 the average MAE over all local textures increase,
when the block size and/or the ranges of ∆i and ∆j increase.
Therefore, when we employ the proposed correlation model
and its corresponding optimal parameters in applications such
as rate distortion analysis, we need to choose the block size
and spatial offsets that yield a small MAE, chosen here to be
0.05.

Fig. 5. The average MAE over all local textures, for different block sizes
and spatial offsets of four videos

The new correlation model with its optimal parameters a,

b, α, β and γ is expected to capture the characteristics of the
content of the frames of a video scene. Therefore, the change
of the optimal parameters a, b, α, β and γ from one frame to
another in a video clip with the same scene is of great interest.
To study this dependence, instead of calculating the optimal
parameters of each local texture for each frame in a video clip
and look at their variations, we use the optimal parameters
calculated based on the average correlation coefficients of the
first frame, and then study the average MAE over all local
textures between the model-calculated correlation coefficients
using these parameters and the average correlation coefficients
of the following frames in the video clip. In Fig. 6 we plot
such MAEs for 90 frames of four CIF videos. We can see
that for paris and news, which have low motion, the MAEs
throughout the whole video sequences are almost the same
as that of the first frame. This is not true for football, whose
MAEs quickly reach beyond 0.1 at frame # 21 and jump to 0.3
at frame # 35. However, this becomes less surprising when we
look at the video frames of this clip presented in Fig. 7. With
the high motion in the football video, the frames in this video
do not have the same scene any more. For example, frame #
35 looks completely different than the first frame. Therefore,
the optimal parameters generated based on one frame can be
used in the other frames of the same scene. Different optimal
parameters need to be calculated for different scenes even
though the frames might reside in the same video.

Fig. 6. The average MAE over all local textures, between the model-
calculated correlation coefficients using the optimal parameters of the first
frame in a video clip, and the average correlation coefficients of the following
frames in the video clip

In the following sections, we study the rate distortion
bounds of digitized natural videos which depend not only on
the correlation model, but also on the pixel variance. Therefore
we discuss briefly here the change in pixel variance from one
frame to another in a video clip as plotted in Fig. 8. The
results in Fig. 8 agree with those in Fig. 6 very well: for videos
paris and news which have low motion and therefore can be
considered as having only one scene in the entire clips, the
change in pixel variance throughout the video clip is almost
negligible; for videos with higher motion, such as bus and
football, a new pixel value variance should be calculated based



TABLE I
THE OPTIMAL PARAMETERS FOR ONE FRAME IN PARIS.CIF AND FOOTBALL.CIF AND THEIR CORRESPONDING MEAN ABSOLUTE ERRORS (MAES)

Paris.cif
a b γ α β MAE

texture #0 0.3 0.6 0.7 0.0 0.6 0.022
texture #1 0.3 0.6 0.9 -0.2 0.0 0.024
texture #2 0.6 0.3 0.9 0.0 -0.1 0.035
texture #3 0.6 0.3 0.9 -0.2 -0.1 0.043
texture #4 0.6 0.3 0.7 0.1 -0.2 0.034
texture #5 0.6 0.3 0.7 0.2 -0.6 0.028
texture #6 0.6 0.4 0.5 -1.3 0.4 0.026
texture #7 0.6 0.4 0.5 0.4 1.1 0.030
texture #8 0.6 0.4 0.6 0.4 0.1 0.046

Football.cif
a b γ α β MAE

texture #0 0.2 0.6 0.8 0.0 -0.1 0.045
texture #1 0.8 0.2 0.3 -1.0 0.1 0.017
texture #2 0.6 0.3 0.8 0.0 -0.2 0.043
texture #3 0.5 0.5 0.5 0.4 0.5 0.048
texture #4 0.3 0.6 0.7 -0.1 0.1 0.040
texture #5 0.4 0.5 0.9 0.1 -0.3 0.034
texture #6 0.6 0.4 0.5 -0.2 0.1 0.031
texture #7 0.4 0.6 0.5 -0.3 -0.7 0.044
texture #8 0.7 0.3 0.6 0.4 0.1 0.029

(a) frame #1 (b) frame #21 (c) frame #35 (d) frame #89

Fig. 7. Four frames in video clip football.cif

on the frames in each scene of the video.

Fig. 8. Pixel value variance of 90 frames in four video clips

IV. THEORETICAL RATE DISTORTION BOUND WITH LOCAL

TEXTURE AS UNIVERSAL SIDE INFORMATION

With the new block-based local-texture-dependent correla-
tion model, we study the rate distortion bound of the video
source where no compression scheme is assumed. To facilitate
the comparison with other rate distortion bounds involving
certain compression schemes derived later in this paper and
the operational rate distortion functions, the video source is
constructed by two parts: X as an M by N block and S as the
surrounding 2M +N +1 pixels (2M on the top, N to the left
and the one on the left top corner). Y denotes the information

of local textures formulated from a collection of natural images
and is considered as universal side information available to
both the encoder and the decoder. The number of available
local textures is denoted by |Y |. We only employ the first order
statistics of Y , P [Y = y], i.e., the frequency of occurrence
of each local texture in the natural images and videos. In
simulations, when available, P [Y = y] is calculated as the
average over a number of natural video sequences commonly
used as examples in video coding studies.

In the following we first investigate briefly the joint coding
of S and X without the universal side information Y , the
case normally studied in information theory; we then focus on
the case when Y is taken into account in the rate distortion
analysis, where interesting new results lie.

Two different distortion constraints are considered in this
paper, denoted by “avgD” and “sepD” respectively:

Average distortion constraint (avgD):

1

|S| + |X|
{

E[||S − Ŝ||2] + E[||X − X̂||2]
}

≤ D. (IV.7)

Separate distortion constraint (sepD):

1

|S|E[||S − Ŝ||2] ≤ D and
1

|X|E[||X − X̂||2] ≤ D. (IV.8)

The average distortion constraint is used dominantly in im-
age and video compression, while recent research in perceptual
quality measurement of videos has suggested the importance
of the separate distortion constraint on maintaining perceptual
video quality, because the variation in video quality from
frame to frame or from one region to another in the same



frame induces an unpleasant viewing experience of the human
users. In this section the lowest rate that can be achieved by
coding X and S together is studied; therefore, we only use
the average distortion constraint.

A. Rate distortion bound without taking into account side
information

The rate distortion bound without taking into account the
texture as side information is a straightforward rate distortion
problem of a source with memory which has been studied
extensively. It can be expressed as

RS,Xjointly−withoutY (D) =

minp(x̂,ŝ|x,s): avgD in Eq. (IV.7)
I(X,S;X̂,Ŝ)
|S|+|X| ,

(IV.9)

which is the minimum mutual information between the source
X, S and the reconstruction X̂, Ŝ, subject to the average
distortion measure, avgD, as defined in Eq. (IV.7). To facilitate
the comparison with the case when side information Y is taken
into account, we calculate the correlation matrix as

E

[(

X
S

)

(XT ST )

]

=

|Y |−1
∑

y=0

σ2ρ

((

X
S

)

|y
)

P [Y = y],

(IV.10)
where the conditional correlation coefficients are exactly what
the new model defines.

B. Rate distortion bound with local texture as side information

The rate distortion bound with the local texture as side
information is a conditional rate distortion problem of a source
with memory.

The conditional rate distortion function of a source X with
side information Y is defined as [37, Sec. 6.1]

RX|Y (D) = min
p(x̂|x,y):D(X,X̂|Y )≤D

I(X ; X̂|Y ), (IV.11)

where

D(X, X̂|Y ) =
∑

x,x̂,y p(x, x̂, y)D(x, x̂|y),

I(X ; X̂|Y ) =
∑

x,x̂,y p(x, x̂, y)log
p(x, x̂|y)

p(x|y)p(x̂|y)
.

(IV.12)

It can be proved [38] that the conditional rate distortion
function in Eq. (IV.11) can also be expressed as

RX|Y (D) = min
D′

ys:D(X,X̂|Y )=
∑

y Dyp(y)≤D

∑

y

RX|y(Dy)p(y),

(IV.13)
and the minimum is achieved by adding up the individual, also
called marginal, rate-distortion functions at points of equal
slopes of the marginal rate distortion functions.

Following the above classic results of conditional rate
distortion theory, the rate distortion bound based on the new
correlation model with the local texture as universal side

information, is

RS,Xjointly−withY (D)

= min
p(x̂,ŝ|x,s,y): avgD in Eq. (IV.7)

I(X,S;X̂,Ŝ|Y )
|S|+|X|

= min
Dy :

∑
y DyP [Y =y]≤D

∑

y RX,S|Y =y(Dy)P [Y = y].

(IV.14)
Because the proposed correlation model discriminates all

the different local textures, we can calculate the marginal rate
distortion functions for each local texture, RX,S|Y =y(Dy),
as plotted in Fig. 9 for paris.cif and football.cif. The local
textures are calculated for each one of the 4 by 4 blocks, the
available nine local textures are chosen to be those plotted
in Fig. 2, and the spatial offsets ∆i and ∆j are set to range
from -7 to 7. The two plots in Figs. 9(a) and 9(b) show that
the rate distortion curves of the blocks with different local
textures are very different. Without the conditional correlation
coefficient model proposed in this paper, this difference could
not be calculated explicitly. The relative order of the nine
local textures in terms of the average rate per pixel depends
not only on the texture but also on the parameters associated
with the correlation coefficient model for each local texture.
For example, texture # 1, which is horizontal prediction, by
intuition should consume less rate compared to other more
complicated textures (# 3 through #8), which is the case
for paris.cif. However for football.cif, texture # 1 consumes
higher rate for some of the more complicated textures. This
can be explained by looking at Fig. 4. In Fig. 4(b) both the
approximate correlation coefficients and the model-calculated
correlation coefficients of texture #1 are above 0.8, which is
very high compared to those of the other textures. This means
that the marginal rate distortion functions depend not only on
the local texture, but also on the characteristics of a specific
video. The latter dependence is captured by the five parameters
a,b,α,β,γ in the new correlation model.

Utilizing the classical results for conditional rate distor-
tion functions in Eq. (IV.13), the minimum in Eq. (IV.14)
is achieved at D′

ys where the slopes
∂RX,S|Y =y(Dy)

∂Dy
are

equal for all y and
∑

y DyP [Y = y] = D. In Fig. 10
we plot this minimum RS,Xjointly−withY (D) as well as
RS,X jointly−withoutY (D) as dashed and solid lines, respec-
tively, for two videos and three different blocksizes. In order
to have a better idea of the region of interest for the aver-
age distortion levels, we plot in Fig. 11 the correspondence
between peak signal to noise ratio (PSNR) and the average
distortion when the maximum pixel value is 255. Comparing
each pair of curves (solid line - without side information;
dashed line - with side information, the same markers for the
same blocksize) for paris.cif in Fig.10(a) shows that engaging
the first-order statistics of the universal side information Y
saves at least 1 bit per pixel at low distortion levels (distortion
less than 25, PSNR higher than 35 dB), which corresponds to
a reduction of about 100 Kbits per frame for the CIF videos
and 1.5 Mbps if the videos only have intra-coded frames and
are played at a medium frame rate of 15 frames per second.
This difference decreases as the average distortion increases



(a) paris.cif

(b) football.cif

Fig. 9. Marginal rate distortion functions for different local textures,
RX,S|Y =y(Dy)

but remains between quarter a bit and half a bit per pixel
at high distortion level (distortion at 150, PSNR at about 26
dB), corresponding to about 375 Kbps to 700 Kbps in bit rate
difference.

The rate distortion curves of paris.cif are generally higher
than those of football.cif due to the higher pixel variance
in paris.cif. For both videos, the higher the blocksizes, the
lower the rate distortion curves. This is reasonable because
when correlation among a larger set of pixels is explored the
average rate per pixel should be lower. The difference between
each pair of curves (solid line - without side information;
dashed line - with side information, the same markers for
the same blocksize) in Figs. 10(a) and 10(b), however, does
not have a monotonic relationship with the block size at any
distortion level. For example, at distortion 50, for paris.cif,
this difference for blocksize 8x8 is lower than those of the
other two blocksizes; but for football.cif, this difference for
blocksize 8x8 is higher than those of the other two blocksizes.

(a) paris.cif

(b) football.cif

Fig. 10. Comparison of the theoretical rate distortion bounds
in Section IV for two videos and three different blocksizes: solid
lines – RS,X jointly−withoutY (D) (Eq. (IV.9)); dashed lines –
RS,X jointly−withY (D) (Eq. ((IV.14))

Fig. 11. The correspondence between peak signal to noise ration (PSNR) in
dB and the average distortion when the maximum pixel value is 255 for CIF
video frames

V. RATE DISTORTION BOUNDS FOR BLOCKING AND

PREDICTION ACROSS NEIGHBORING BLOCKS

Breaking an image frame into 16 × 16 pixel MBs and
processing one MB at a time, commonly known as the



“blocking” scheme, has been employed in the most popular
image coding standards such as JPEG and almost all video
coding standards such as MPEG-2/4 and the H.26x series
[28]–[31]. In AVC/H.264 intra-frame prediction is utilized
to reduce the spatial redundancy in the intra-coded frames,
as discussed in Section III. With the new block-based local-
texture-dependent correlation model, an explicit study of the
rate distortion behavior of these key schemes, such as blocking
and intra-prediction, is feasible. The basic set up can be
summarized in the block diagram in Fig. 12. X denotes the
M by N block currently being processed. The surrounding
2M + N + 1 pixels (2M on the top, N to the left and the
one on the left top corner), denoted by S, are used to form a
prediction block for each one of the available local textures,
as

Z = X − P
(A)
d S, (V.15)

where P
(a)
d is a M × N by 2M + N + 1 matrix, different

for each local texture. A is the local texture chosen for the
current block which yields the smallest prediction error. Z
and A are further coded and transmitted to the decoder, where
the predicted value is added in to obtain

X̂ = Ẑ + P
(Â)
d Ŝ. (V.16)

In the block diagram in Fig. 12, Y denotes the information of
local textures formulated from a collection of natural images
and is considered as universal side information available to
both the encoder and the decoder. The number of available
local textures is denoted by |Y |.

Prediction
Intermediate
processing

Inverse
prediction

X

Y Y

X̂
S Ŝ

Z, A Ẑ, Â

Fig. 12. Coding of one M by N block X and the surrounding 2M +N +1
pixels S

With the block based nature of the new correlation model,
we study the penalty paid in average rate when the corre-
lation among the neighboring MBs or blocks is disregarded
completely (blocking, Section V-A) or is incorporated par-
tially through the predictive coding (blocking and intra-frame
prediction, Section V-B). In this Section we use the separate
distortion measure, sepD as defined in Eq. (IV.8) since in
video coding each MB is processes sequentially and only local
distortion is considered. The rate distortion bounds calculated
using sepD should be slightly higher than those when avgD
is used.

A. Rate distortion bound for blocking

Since in this subsection we are interested in the penalty paid
in average rate when the correlation among the neighboring
MBs or blocks are disregarded completely, S and X are coded
separately with the separate distortion constraint sepD in Eq.
(IV.8). The total rate can be calculated as

RS,Xseparately−withoutY (D) =
RX(D)|X|+RS(D)|S|

|S|+|X| ,
(V.17)

which is the average of the rate distortion functions of
X and S. We plot RS,X separately−withoutY (D) as dotted
lines in Fig. 13 for two videos and three different block
sizes. Not surprisingly for both videos and all three block
sizes, coding S and X separately costs more bits than coding
them jointly. The difference in bit rate decreases as the block
size increases, since for smaller block sizes information on
stronger correlation across the blocks is disregarded. With
the new correlation coefficient model and the corresponding
rate distortion curves, we can calculate explicitly the bit rate
increase caused by blocking. For example, this penalty is one
sixth bit per pixel in this plot at all distortion levels in Fig.
13(a), which is quite significant.

B. Rate distortion bound for blocking and optimal prediction

In the following we focus on the scenario when the video
frames are processed block by block sequentially but the corre-
lation among the blocks is utilized through predictive coding.
We restrict ourselves to the separate distortion measure sepD
in Eq. (IV.8) and therefore S is coded with no consideration
of X, after which Z and A are calculated by using intra-
prediction in Eq. (V.15). The rate distortion function for this
scenario is

RS,Z,A separately−withoutY (D) =

(

min
p(ŝ|s):

E[||S−Ŝ||2]
|S|

≤D
I(S; Ŝ)

+ min
p(ẑ,â|z,a,s,ŝ):

E[||X−X̂||2]
|X|

≤D
I(Z, A; Ẑ, Â)

)

/(|S| + |X |)

(V.18)
If we restrict that A = Â, i.e., we code the local texture A

losslessly, the second part in Eq. (V.18) becomes

minp(ẑ,â|z,a,s,ŝ): 1
|X|

E[||X−X̂||2]≤D I(Z, A; Ẑ, Â) =

min
p(ẑ|z,a,s,ŝ): 1

|X| E[||X−X̂||2]≤D
I(Z; Ẑ|A) + H(A),

(V.19)
which forms an upper bound for all the scenarios when A is
coded either losslessly or subject to a fidelity criterion. Also
when A = Â, we have

E[||X − X̂||2] =
∑

a
Pr(a)E[||(Z + P

(a)
d S) − (Ẑ + P

(a)
d Ŝ)||2|a]

=
∑

a
Pr(a)

∫

s

∫

ŝ

∫

z

∫

ẑ
p(z, ẑ, s, ŝ|a)(ẑ − z)T (ẑ − z)+

(ŝ − s)T P
(a)T
d P

(a)
d (ŝ − s) + 2(ŝ − s)T P

(a)T
d (ẑ − z)dsdŝdzdẑ.

(V.20)
In order to investigate the lowest rate when predictive

coding is employed, we use the optimal linear predictor
P

(a)
opt = E[XST |a](E[SST |a])−1 assuming that E(SST |a) is

non-singular. Since the source is assumed to be zero-mean
Gaussian, the optimal linear predictor is also the optimal
conditional mean predictor. The optimality is in the sense of
minimizing MSE of X. When the optimal linear predictor
P

(A)
opt is used, the cross-product term in Eq. (V.20) disappears.



(a) paris, block size 4x4 (b) football, block size 4x4

(c) paris, block size 8x8 (d) football, block size 8x8

(e) paris, block size 16x16 (f) football, block size 16x16

Fig. 13. Comparison of rate distortion bounds in Sections IV and V for two videos and three blocksizes: solid lines – RS,X jointly−withoutY (D)
in Eq. (IV.9); dashed lines – RS,X jointly−withY (D) in Eq. (IV.14); dotted lines – RS,X separately−withoutY (D) in Eq. (V.17) ; dash dot lines –
RS,Z,A separately−sep−upperbound(D) in Eq. (V.24)



Let

D′
S =

∑

a

Pr(a)

∫

s

∫

ŝ

p(s, ŝ|a)(ŝ−s)T P
(a)T
opt P

(a)
opt (ŝ−s)dsdŝ.

(V.21)
Eq. (V.20) becomes

E[||X − X̂||2] = |Z|DZ + D′
S. (V.22)

Since S is optimally coded without consideration of X as in
the first part of Eq. (V.18), D ′

S is fixed as well. The constraint
on the distortion of Z becomes

DZ ≤ (|X |D − D′
S)/|Z|. (V.23)

An upper bound for Eq. (V.18) is thus

RS,Z,A separately−upperbound(D) = 1
|S|+|X|

(

|S|RS(D) + |Z|RZ|A(
|X|D−D′

S

|Z| ) + H(A)
) (V.24)

The conditional rate distortion function RZ|A(DZ) in Eq.
(V.24) is again calculated based on the “equal slope” theorem
of the marginal rate distortion functions RZ|A=a(Da) [38].
In this case since the actual local texture A is coded without
any loss, the exact statistics of A are available at both the
encoder and the decoder; therefore, whether the universal side
information Y is available or not becomes insignificant. The
only complexity in computation is caused because E(SS T |a)
is usually singular when the direction of the local texture is
DC, horizontal, vertical, or too close to horizontal/vertical. In
these cases we use the pseudo-inverse matrix of E(SS T |a) in
the calculation.

The bit rate decrease from the dotted lines (coding S
and X separately, Eq. (V.17)) to the dash-dotted lines (the
upper bound of coding S, Z and A separately with optimal
prediction, Eq. (V.24)) is truly phenomenal in all the plots
in Fig. 13 at low distortion levels, corresponding to about
1 bit per pixel for paris and between half a bit to 1 bit
per pixel for for football at distortion 25 (corresponding to
PSNR 35 dB). This bit rate saving decreases as the distortion
increases, and interestingly, it vanishes for football at certain
distortions. This is because spending bits coding the local
texture A losslessly becomes unjustifiable at high distortion
levels. This is especially true when the bit rate is low and
the processing block size is small. We can see that in Fig.
13(b) the dash-dotted line and the dotted line intersect at a
distortion of about 180, corresponding to an average rate of
0.4 bits per pixel. The average bit rate spent on coding the
local texture A losslessly is simply the entropy of A, divided
by the number of pixels per block, which is 16 in Fig. 13(b)
since 4× 4 blocks are investigated. This average rate is about
0.2 bits per pixel, or 50% of the total average rate. This is
to say that for this particular video football.cif, processed in
4 × 4 blocks, 0.4 bits per pixel is the threshold in average
rate that depicts when incorporating the correlation among
the neighboring blocks through optimal predictive coding and
coding the local texture A losslessly, becomes worse than
discarding the correlation among the neighboring blocks. This
crossover average rate is different for different videos and

different processing blocksizes, as can be seen in Fig. 13.
It can be calculated along with the rate distortion bounds
we derive in this paper and be utilized in real video codecs.
More discussions about RS,Z,A separately−upperbound(D) are
presented in Section VI when compared to the operational rate
distortion curves of AVC/H.264.

VI. COMPARISON TO THE OPERATIONAL RATE

DISTORTION CURVES OF AVC/H.264

Among all the rate distortion functions we investigate
in the previous sections, engaging prediction and coding
S, Z and A separately with the separate distortion con-
straint, as in Section V-B, is the most similar to intra-fame
coding in state-of-the-art codecs such as AVC/H.264. The
upper bound RS,Z,A separately−upperbound(D) in Eq. (V.24)
is achieved when the local texture A is losslessly coded
and optimal prediction is employed. Since in AVC/H.264,
for intra-coded frames, the intra-modes are always coded
losslessly, RS,Z,A separately−upperbound(D) should be a lower
bound for the operational rate distortion function of intra-
frame coding in AVC/H.264. If we remove all the as-
sumptions on coding, the rate distortion bound of a video
frame is RS,Xjointly−withY (D) in Eq. (IV.14). It is the
theoretical rate distortion bound that is solely based on
the proposed correlation model of the video source and
takes advantage of the universal side information on the
local texture. RS,Xjointly−withY (D) should always be lower
than RS,Z,A separately−upperbound(D) according to the data
processing theorem [39]. A third rate distortion bound is
RS,Xjointly−withoutY (D) as calculated in Eq. (IV.9). Without
taking into account the texture information this rate distortion
bound should perform similarly to those based on the old
correlation models as discussed in Section II-1.

In Fig. 14 we plot these three rate distortion bounds
for paris.cif and the operational rate distortion functions for
paris.cif intra-coded in AVC/H.264. In AVC/H.264 we choose
the main profile with context-adaptive binary arithmetic coding
(CABAC), which is designed to generate the lowest bit rate
among all profiles. Rate distortion optimized mode decision
and a full hierarchy of flexible block sizes from MBs to 4x4
blocks are used to maximize the compression gain. For the
rate distortion bounds, we choose the block size 16x16 and
the spatial offsets as from −16 to 16.

As shown in Fig. 14, the rate distortion bound without
local texture information, RS,Xjointly−withoutY (D) as in Eq.
(IV.9), plotted as a solid line, is higher than the actual
operational rate distortion curve of AVC/H.264 at all distortion
levels. The rate distortion bound with local texture information
taken into account while making no assumptions in coding,
i.e., RS,Xjointly−withY (D) as in Eq. (IV.14), plotted as a
dashed line, is indeed a lower bound with respect to the
operational rate distortion curves of AVC/H.264. The rate dis-
tortion bound calculated based on the new texture dependent
correlation model for the scenario where optimal predictive
coding is engaged to code S, Z and A separately with separate
distortion constraint, i.e., RS,Z,A separately−upperbound(D) as



in Eq. (V.24), plotted as a dash dotted line, is a rea-
sonably tight lower bound, especially at medium to high
distortion levels. In Fig. 15(a) we plot this lower bound
RS,Z,A separately−upperbound(D) (Eq. (V.24)) and the oper-
ational rate distortion function using AVC/H.264 for two
other videos. We can see that although the lower bounds are
calculated based on only five parameters generated from each
video, they do agree with the operational rate distortion curves
of the corresponding video reasonably well. If we further plot
these lower bounds as average rate per pixel versus PSNR of
a video frame as in Fig. 15(b), the lower bounds appear to be
nearly, linear which shows promises in codec design.

Fig. 14. Comparison of the rate distortion bounds and the operational rate
distortion curves of paris.cif intra-coded in AVC/H.264

VII. CONCLUSIONS

We propose a conditional correlation model for two close
pixels in one frame of digitized natural video sequences, with
the conditioning being on the texture of the blocks where
the two pixels are located. This new correlation model is
dependent upon five parameters whose optimal values can be
calculated for a specific image or video with a mean absolute
error (MAE) usually smaller than 5%. Classical results in
information theory are utilized to derive the conditional rate
distortion function when the universal side information of local
textures is available at both the encoder and the decoder, which
is shown to save as much as 1 bit per pixel for selected videos
at low distortions. We further study the common “blocking”
scheme which divides a video frame into 16×16 macroblocks
or smaller blocks before processing. With the block based
nature of the new correlation model, we find the penalty paid in
average rate when the correlation among the neighboring MBs
or blocks is disregarded completely or is incorporated partially
through predictive coding. The three rate distortion bounds
investigated are compared to the operational rate distortion
functions generated in intra-frame coding using AVC/H.264
video coding standard. The rate distortion bound without local
texture information is shown to be much higher than the
actual operational rate distortion curve of AVC/H.264. The
rate distortion bound with local texture information taken into
account while making no assumptions in coding, is indeed
a lower bound with respect to the operational rate distortion
curves of AVC/H.264. The rate distortion bound involving

(a) average rate vs. average distortion

(b) average rate vs. PSNR

Fig. 15. The lower bounds calculated based on the new correlation coefficient
model and its corresponding optimal parameters for three videos, compared
to the operational rate distortion curves of these videos coded in AVC/H.264

lossless coding of texture information and optimal prediction,
is a reasonably tight lower bound and can be utilized in video
codec design.
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