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Abstract— We revisit the classic problem of developing a
correlation model for natural videos and studying their the-
oretical rate distortion bounds. We propose the correlation
coefficient of two pixels in two nearby video frames as the
product of the spatial correlation coefficient of these two pixels,
as if they were in the same frame, and a variable to quantify
the temporal correlation between these two video frames. The
spatial correlation model for pixels within one video frame is
a conditional correlation model. The conditioning is on local
texture and the optimal parameters can be calculated for a
specific video with a mean absolute error (MAE) usually smaller
than 5%. We use this conditional correlation model to calculate
the conditional rate distortion function when universal side
information on local texture is available at both the encoder
and the decoder. We demonstrate that this side information,
when available, can save as much as 1 bit per pixel for a single
video frame and 0.7 bits per pixel for multiple video frames.
This rate distortion bound with local texture information taken
into account while making no assumptions on coding, is shown
indeed to be a valid lower bound with respect to the operational
rate distortion curves of both intra-frame and inter-frame
coding in AVC/H.264.

I. INTRODUCTION

Parsimonious statistical models of natural images and
videos can be used to calculate the rate distortion functions
of these sources as well as to optimize particular image and
video compression methods. Although they have been stud-
ied extensively, the statistical models and their corresponding
rate distortion theories are falling behind the fast advancing
image and video compression schemes.

The research on statistically modeling the pixel values
within one image goes back to the 1970s when two cor-
relation functions were studied [1], [2]. Both assume a
Gaussian distribution of zero mean and a constant variance
for the pixel values and treat the correlation between two
pixels within an image as dependent only on their spatial
offsets. These two correlation models for natural images
were effective in providing insights into image coding and
analysis. However they are so simple that, as shown in [3],
[4], the rate distortion bounds calculated based on them
are actually much higher than the operational rate distortion
curves of the current intra-frame video coding schemes. For
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the same reason, more recent rate distortion theory work on
video coding such as [5], [6] that adopt these two spatial
correlation models have limited applicability.

Due to the difficulty of modeling the correlation among
the pixel values in natural image and video sources, studying
their rate distortion bounds is often considered infeasible [7].
As a result, in the past two decades, the emphasis of rate
distortion analysis has been on setting up operational models
for practical image/video compression systems to realize
rate control [8]–[14] and to implement quality optimization
algorithms [7], [15]–[18]. For example, a very popular such
model treats the discrete cosine transform (DCT) coefficients
in the predicted frames of a video sequence as uncorrelated
Laplacian random variables [19], [20] so that the coding
bit rate R and reconstruction distortion D can be expressed
as simple functions of the quantization parameter q. Other
popular operational rate and distortion models include those
proposed in [12]–[14], [17], [21]–[24] that do not consider
packet loss over communication networks and those pro-
posed in [18], [25]–[29] that do take into account possible
packet loss over the networks. These operational rate and
distortion models are derived for specific coding schemes,
and therefore, they cannot be utilized to derive the rate
distortion bound of videos.

In our previous work [3], [4] we addressed the difficult
task of modeling the correlation in video sources by propos-
ing a new spatial correlation model for two close pixels
in one frame of digitized natural video sequences that is
conditional on the local texture. This new spatial correlation
model is dependent upon five parameters whose optimal
values can be calculated for a specific image or video. The
new spatial correlation model is simple, but it performs
very well, as strong agreement is discovered between the
approximate correlation coefficients and the correlation coef-
ficients calculated by the new correlation model, with a mean
absolute error (MAE) usually smaller than 5%. With the
new block-based local-texture-dependent spatial correlation
model, we first studied the marginal rate distortion functions
of the different local textures. These marginal rate distortion
functions were shown to be quite distinct from each other.
Classical results in information theory were utilized to derive
the conditional rate distortion function when the universal
side information of local textures is available at both the
encoder and the decoder. We demonstrated that by involving
this side information, the lowest rate that is theoretically



achievable in intra-frame video compression can be as much
as 1 bit per pixel lower than that without the side information.
This rate distortion bound with local texture information
taken into account while making no assumptions on coding,
was shown indeed to be a valid lower bound with respect to
the operational rate distortion curves of intra-frame coding
in AVC/H.264.

In this paper we extend the correlation coefficient model-
ing and rate distortion analysis from pixels within one video
frame to pixels that are located in nearby video frames. The
correlation coefficient of two pixels in two nearby video
frames, denoted by ρ, is modeled as the product of ρ s, the
texture dependent spatial correlation coefficient of these two
pixels, as if they were in the same frame, and ρ t, a variable
to quantify the temporal correlation between these two video
frames. We show that for two pixels located in nearby video
frames, their spatial correlation and their temporal correlation
are approximately independent. Therefore ρ t does not depend
on the textures of the blocks the two pixels are located in
and is a function of the indices of the two frames. With
ρt calculated for the nearby frames of a video, we again
derive the conditional rate distortion function when the side
information of local textures is available at both the encoder
and decoder. We demonstrate that by involving this side
information, the lowest rate that is theoretically achievable
in inter-frame video compression can be as much as 0.7 bit
per pixel lower than that without the side information. This
rate distortion bound with local texture information taken
into account while making no assumptions on coding, is
shown indeed to be a valid lower bound with respect to the
operational rate distortion curves of inter-frame coding in
AVC/H.264.

The remainder of this paper is organized as follows. In
Section II we review the texture dependent spatial correlation
model and the marginal rate distortion bounds of a single
video frame, as proposed in our previous work. In Section
III we study the temporal correlation between pixels located
in nearby frames of a video sequence. We reveal the approx-
imate independence of the spatial and temporal correlation
between these pixels and propose a model to quantify their
overall correlation coefficients. In Section IV we calculate
the conditional rate distortion bounds of video sequences
based on the new correlation coefficient model and compare
them to the inter-frame coding in AVC/H.264. We conclude
this paper in Section V.

II. PREVIOUS WORK: CORRELATION MODEL IN THE

SPATIAL DOMAIN

In our previous work [3], [4] we propose a new correlation
model for a digitized natural image or an image frame in
a digitized natural video. We assume that all pixel values
within one natural image form a two dimensional Gaussian
random vector with memory, and each pixel value is of zero
mean and the same variance σ2.

To quantify the effect of the surrounding pixels on the
correlation between pixels of interest, we utilize the concept
of local texture, which is simplified as local orientation, i.e.,

the axis along which the luminance values of all pixels in
a local neighborhood have the minimum variance. The local
texture is similar to the intra-prediction modes in AVC/H.264
[30], but with a generalized block size and arbitrary number
of total textures. To calculate the local texture of a block, we
also employ the pixels on the top and to the left of this block
as surrounding pixels. However we use the original values of
these surrounding pixels rather than the previously encoded
and reconstructed values used in intra-frame prediction of
AVC/H.264. The block can have any rectangular shape as
long as its size is small compared to the size of the image.
Also the local textures need not to be restricted to those
defined in AVC/H.264.

Once the block size and the available local textures are
fixed, the local texture of the current block is chosen as the
one that minimizes the mean absolute error (MAE) between
the original block and the prediction block constructed based
on the surrounding pixels and the available local textures.
The local texture reveals which one, out of the different
available local textures, is the most similar to the texture
of the current block. It is reasonable to conjecture that the
difference in local texture also affects the correlation between
two close pixels within one video frame. To confirm this we
first calculate the approximate correlation coefficient between
one block of size M × N , and another nearby block of
the same size, shifted by ∆i vertically and ∆j horizontally,
according to the following formula

ρ̂s(∆i,∆j) =
1

MN

∑

[X(i, j)X(i + ∆i, j + ∆j)]
√

∑

[X2(i, j)]
∑

[X2(i + ∆i, j + ∆j)]
,

(II.1)
for −I ≤ ∆i ≤ I , −J ≤ ∆j ≤ J . We denote this average
approximate correlation coefficient for each local texture as
ρ̂s(∆i,∆j|y) where y denotes the local texture.

Fig. 1. The loose surfaces (the mesh surfaces with less data points) are
ρ̂s(∆i, ∆j|y), the approximate correlation coefficients of two pixel values
in the first frame from paris.cif, averaged among the blocks that have the
same local texture; the dense surfaces are ρs(∆i, ∆j|y), the correlation
coefficients calculated using the proposed conditional spatial correlation
model, along with the optimal set of parameters

The following is the formal definition of the new spatial



correlation coefficient model that is dependent on the local
texture.

Definition 2.1: The correlation coefficient of two pixel
values with spatial offsets ∆i and ∆j within a digitized
natural image or an image frame in a digitized natural video
is defined as

ρs(∆i,∆j|Y1 = y1, Y2 = y2) =
ρs(∆i,∆j|y1) + ρs(∆i,∆j|y2)

2
,

(II.2)
where

ρs(∆i,∆j|y) = a(y) + b(y)e−|α(y)∆i+β(y)∆j|γ(y)

. (II.3)

Y1 and Y2 are the local textures of the blocks the two pixels
are located in, and the parameters a, b, α, β and γ are
functions of the local texture Y . Furthermore we restrict
b(y) ≥ 0 and a(y) + b(y) ≤ 1.

For each local texture, we choose the combination of the
five parameters a, b, α, β and γ that jointly minimizes
the MAE between the approximate correlation coefficients,
averaged among all the blocks in a video frame that have
the same local texture, i.e., ρ̂s(∆i,∆j|y), and the correlation
coefficients calculated using the new model, ρ s(∆i,∆j|y).
These optimal parameters for one frame in Paris.cif and
their corresponding MAEs are presented in Table I. (The
local textures are calculated for each one of the 4 by 4
blocks; the available local textures are chosen to be those
implemented in AVC/H.264; ∆i and ∆j range from −7 to
7.) We can see from this table that the parameters associated
with the new model are quite distinct for different local
textures while the MAE is always less than 0.05. In Fig.
1 we plot ρs(∆i,∆j|y) of all the local textures for the
same image from paris.cif using these optimal parameters
(as the dense surfaces, i.e., the mesh surface with more data
points). We can see that the new spatial correlation model
does capture the dependence of the correlation between two
pixels on the local texture and fits the average approximate
correlation coefficients ρ̂s(∆i,∆j|y) very well.

With the new block-based local-texture-dependent corre-
lation model, we study the rate distortion bound of the
video source where no compression scheme is assumed.
The video source is constructed by two parts: X as an
M by N block and S as the surrounding 2M + N + 1
pixels (2M on the top, N to the left and the one on
the left top corner). Y denotes the information of local
textures formulated from a collection of natural images and
is considered as universal side information available to both
the encoder and the decoder. We only employ the first order
statistics of Y , P [Y = y], i.e., the frequency of occurrence
of each local texture in the natural images and videos. In
simulations, when available, P [Y = y] is calculated as the
average over a number of natural video sequences commonly
used as examples in video coding studies.

Because the proposed correlation model discriminates all
the different local textures, we can calculate the marginal rate
distortion functions for each local texture, R X,S|Y =y(Dy),

TABLE I

THE OPTIMAL PARAMETERS FOR ONE FRAME IN PARIS.CIF AND THEIR

CORRESPONDING MEAN ABSOLUTE ERRORS (MAES)

Paris.cif
a b γ α β MAE

texture #0 0.3 0.6 0.7 0.0 0.6 0.022
texture #1 0.3 0.6 0.9 -0.2 0.0 0.024
texture #2 0.6 0.3 0.9 0.0 -0.1 0.035
texture #3 0.6 0.3 0.9 -0.2 -0.1 0.043
texture #4 0.6 0.3 0.7 0.1 -0.2 0.034
texture #5 0.6 0.3 0.7 0.2 -0.6 0.028
texture #6 0.6 0.4 0.5 -1.3 0.4 0.026
texture #7 0.6 0.4 0.5 0.4 1.1 0.030
texture #8 0.6 0.4 0.6 0.4 0.1 0.046

as plotted in Fig. 2 for paris.cif. This plot shows that the rate
distortion curves of the blocks with different local textures
are very different. Without the conditional correlation coeffi-
cient model proposed in this paper, this difference could not
be calculated explicitly. In [4], we calculate the conditional
rate distortion function when universal side information on
local texture is available at both the encoder and the decoder.
This side information, when available, can save as much as
1 bit per pixel for selected videos at low distortions. This
rate distortion bound is compared to the operational rate
distortion functions generated in intra-frame coding using
the AVC/H.264 video coding standard.

Fig. 2. Marginal rate distortion functions for different local textures,
RX,S|Y =y(Dy), for a frame in paris.cif

III. CORRELATION AMONG PIXELS LOCATED IN NEARBY

FRAMES

In this section we extend the correlation coefficient mod-
eling from pixels within one video frame to pixels that are
located in nearby video frames. Similar to the approach
we take in deriving the spatial correlation model, we first
study the approximate correlation coefficient between one
block of size M × N in frame k1 of a video, and another
block of the same size, shifted by ∆i vertically and ∆j

horizontally, in frame k2 of the same video. Eq. (II.1) is
used to calculate the approximate correlation coefficient of



each pair of blocks, which is then averaged over all blocks
with the same local texture. We denote this extended average
approximate correlation coefficient as ρ̂(∆i,∆j, k 1, k2|y). In
Fig. 3 we plot ρ̂(∆i,∆j, k1 = 1, k2 = 16|y), with y being
one of 9 local textures for video silent.cif. As shown in this
figure, even though silent.cif is a video of a medium level
of motion, the pixels in the first frame and the pixels in the
sixteenth frame have quite high correlation; and furthermore,
the approximate correlation coefficients between these pixels
show certain shapes that are similar to those modeled by
the spatial correlation coefficient model we proposed in our
previous work.

Fig. 3. ρ̂(∆i, ∆j, k1 = 1, k2 = 16|y), the overall approximate correlation
coefficients of two blocks, each in the 1st and 16th frames of silent.cif,
respectively, averaged among the blocks that have the same local texture

Fig. 4. ρ̂(∆i,∆j,k1=1,k2=16|y)
ρ̂(∆i,∆j,k1=k2=1|y)

, the element by element fraction of the
overall approximate correlation coefficient over the spatial approximate
correlation coefficient of the first frame, of the video paris.cif

To isolate the temporal correlation between two frames
from the overall correlation, and to apply the spatial cor-
relation coefficient model we already investigated, we first
divide, element by element, the overall approximate cor-
relation coefficients ρ̂(∆i,∆j, k1 = 1, k2 = 16|y), by
the spatial approximate correlation coefficients ρ̂ s(∆i,∆j|y)
of the first frame, i.e., ρ̂(∆i,∆j, k1 = k2 = 1|y). The

results for paris.cif are plotted in Fig. 4. As shown in
this figure (note that the scales in this figure are different
than those in Figs. 1 and 3), although the fractions are
not exactly constant across all the values of ∆i and ∆j,
their variations are much smaller than the variations of the
overall approximate correlation coefficients and the spatial
approximate correlation coefficients. As a result, we calculate
the temporal approximate correlation coefficients, denoted
by ρ̂t(k1, k2|y), as the fractions of ρ̂(∆i,∆j, k1, k2|y) over
ρ̂(∆i,∆j, k1 = k2|y), then averaged over all values of ∆i

and ∆j.
Now let us take a closer look at the temporal approximate

correlation coefficients ρ̂t(k1, k2|y) for all frames and local
textures of interest. For example, if we investigate the
correlation among 16 frames of a video and there are 9
different local textures, we need to calculate and store a
16×16×9 matrix in order to specify the temporal correlation
among all pixels within these 16 video frames. One attempt
to reduce the dimension of this matrix is to take the averages
of ρ̂t(k1, k2|y) over all local textures y, the result of which is
plotted in Fig. 5 for paris.cif. Looking at this plot, we notice
that when k2 > k1, ρ̂t(k1, k2) is almost a constant for all
values of k1 and k2 with the same shift ∆k := k2 − k1. We
therefore further take average of ρ̂ t(k1, k2) over all values of
k1 and k2 with the same temporal shift ∆k which results in
the curve plotted in Fig. 7. As seen from this plot, ρ̂ t(∆k)
stably descends as ∆k increases from ∆k ≥ 0 and it is not
quite symmetric with respect to ∆k = 0. Another attempt to
reduce the dimension of ρ̂ t(k1, k2|y) is to take its average
over all values of k1 and k2 with the same shift ∆k first for
each local texture y. Averages taken this way are plotted in
Fig. 6. ρ̂(∆k|y) shown in this figure appears to be different
for different local textures. This behavior is interesting and
is currently under investigation. For simplicity, we propose
to use ρ̂t(∆k), the average of ρ̂t(k1, k2|y) over all k1 and k2

with the same shift ∆k = k2 − k1 and all local texture y’s,
to specify approximately the temporal correlation coefficient
between two video frames with index difference ∆k. In
the next section, we will show that for paris.cif, the rate
distortion bounds when either ρ̂(∆k|y) or ρ̂(∆k) is used are
very similar in values.

Fig. 5. ρ̂t(k1, k2), the average of ρ̂t(k1, k2|y) over all texture y’s



Fig. 6. ρ̂t(∆k|y), the average of ρ̂t(k1, k2|y) over all k1 and k2 with
the same shift ∆k = k2 − k1

Fig. 7. ρ̂t(∆k), the average of ρ̂t(k1, k2|y) over all k1 and k2 with
the same shift ∆k = k2 − k1 and all local texture y’s, for paris.cif. This
average is used to specify approximately the temporal correlation coefficient
between two video frames with index difference ∆k

We conclude this section with the following definition of
the overall correlation coefficient model that is dependent on
the local texture.

Definition 3.1: The correlation coefficient of two pixel
values within a digitized video, with spatial offsets ∆i and
∆j, and temporal offset ∆k, is defined as

ρ(∆i,∆j, ∆k|Y1 = y1, Y2 = y2)
= ρs(∆i,∆j|Y1 = y1, Y2 = y2)ρt(∆k)

(III.4)

where ρs(∆i,∆j|Y1 = y1, Y2 = y2) is the spatial corre-
lation coefficient as defined in Definition 2.1 and ρ t(∆k)
can be calculated as the approximate temporal correlation
coefficients ρ̂t(∆k|y), averaged over all local texture y’s.

IV. NEW THEORETICAL RATE DISTORTION BOUNDS OF

NATURAL VIDEOS

In this section, we study the theoretical rate distortion
bounds of videos based on the correlation coefficient model
as defined in Definition 3.1 and compare these bounds to the
inter-frame coding of AVC/H.264.

We construct the video source in frame k by two parts:
Xk as an M by N block (row scanned to form an MN by
1 vector) and Sk as the surrounding 2M +N +1 pixels (2M

on the top, N to the left and the one on the left top corner,
forming a 2M +N +1 by 1 vector). If we investigate the rate
distortion bounds of a few frames k1, k2, . . . , kl, the video
source across all these frames is defined as a long vector V ,
where

V = [XT
k1

, ST
k1

, XT
k2

, ST
k2

, . . . , XT
kl

, ST
kl

]T . (IV.5)

We use Y to denote the information of local textures
formulated from a collection of natural images and Y is
considered as universal side information available to both
the encoder and the decoder. Again, we assume that V is a
Gaussian random vector with memory, and all entries of V

are of zero mean and the same variance σ 2. The value of
σ is different for different video sequences. The correlation
coefficients between each two entries of V can be calculated
using Definition 3.1.

The conditional rate distortion function of V with side
information Y is

RV |Y (D) = min
p(v̂|v,y):D(V ,V̂ |Y )≤D

I(V ; V̂ |Y ), (IV.6)

where

D(V , V̂ |Y ) =
∑

v,v̂,y p(v, v̂, y)D(v, v̂|y)

and

I(V ; V̂ |Y ) =
∑

v,v̂,y p(v, v̂, y)log
p(v, v̂|y)

p(v|y)p(v̂|y)
.

(IV.7)

It can be proved [31] that the conditional rate distortion
function in Eq. (IV.6) can also be expressed as

RV |Y (D) = min
D′

ys:D(V ,X̂|Y )=
∑

y
Dyp(y)≤D

∑

y

RV |y(Dy)p(y),

(IV.8)
and the minimum is achieved by adding up R V |y(Dy), the
individual, also called marginal, rate-distortion functions,
at points of equal slopes of the marginal rate distortion
functions.

We calculate three types of theoretical rate distortion
bounds in this section.

1) With texture, one ρt for all textures: this rate distortion
bound is defined in the above Eq. (IV.6) and correlation
coefficients are exactly those defined in Definition 3.1.

2) With texture, one ρt for each texture: this rate distor-
tion bound is also what is defined in Eq. (IV.6), but
when using Definition 3.1 to calculate the correlation
coefficients among the entries of V , we do not take the
average of ρt(∆k|y) over all textures but use ρt(∆k|y)
directly, i.e., for paris.cif, we use the values plotted in
Fig. 6 rather than those in plotted Fig. 7.

3) Without texture: This rate distortion bound does not
take into account the local texture as side information.
For this rate distortion bound, we first take the aver-
age of the texture dependent correlation coefficients
as defined in Definition 3.1 over all local textures,



then calculate RV (D) which is a straightforward rate
distortion problem of a source with memory that has
been studied extensively.

For all the above three cases, we first decorrelate the
entries of the video source V by taking eigen value decom-
position of their respective correlation matrices. The reverse
water-filling theorem [32] is then utilized to calculate the
rate distortion bound of V , whose entries are independent
Gaussian random variables after decorrelation.

In Fig. 8 we plot these three rate distortion bounds
for paris.cif and the operational rate distortion curves for
paris.cif, inter-coded in AVC/H.264. In AVC/H.264 we
choose the main profile with context-adaptive binary arith-
metic coding (CABAC), which is designed to generate the
lowest bit rate among all profiles. Rate distortion optimized
mode decision and a full hierarchy of flexible block sizes
from MBs to 4x4 blocks are used to maximize the com-
pression gain. For the rate distortion bounds, we choose the
block size 16x16 and the spatial offsets as from −16 to 16.

As shown in Fig. 8, the rate distortion bound without local
texture information, plotted as solid lines, are higher than,
or intersect with, the actual operational rate distortion curve
of AVC/H.264 at all distortion levels. The rate distortion
bounds with local texture information taken into account
while making no assumptions in coding, both using one ρ t

for all textures and using one ρ t for each texture, plotted as
dotted lines and dashed lines respectively, are indeed lower
bounds with respect to the operational rate distortion curves
of AVC/H.264. The rate distortion bounds of using either
temporal correlation definition agree with each other except
at the very low distortion level, where the rate distortion
bound of using one ρ t for each texture is slightly higher
than that of using one ρt for all textures. Also as more video
frames are coded, the actual operational rate distortion curves
of inter-frame coding in AVC/H.264 become closer and
closer to the theoretical rate distortion bound when no texture
information is considered. This is because in AVC/H.264,
only the intra-coded frames (i.e., only the 1 st frame in our
simulation) take advantage of the local texture information
through intra-frame prediction, while the inter-coded frames
are blind to the local texture information. Therefore, when
more frames are inter-coded, the bit rate saving achieved
by intra-frame prediction in the 1 st frame is averaged over a
larger number of coded frames. This suggests possible coding
efficiency improvement in video codec design by involving
texture information even for inter-coded frames.

V. CONCLUSIONS

We revisit the classic problem of developing a correlation
model for natural videos and studying their rate distortion
bounds. In our previous work [3], [4] we addressed the
difficult task of modeling the correlation in video sources
by proposing a new spatial correlation model for two close
pixels in one frame of digitized natural video sequences
that is conditional on the local texture. This new spatial
correlation model is dependent upon five parameters whose
optimal values can be calculated for a specific image or

video. The new spatial correlation model is simple, but
it performs very well, as strong agreement is discovered
between the approximate correlation coefficients and the
correlation coefficients calculated by the new correlation
model, with a mean absolute error (MAE) usually smaller
than 5%. With the new block-based local-texture-dependent
spatial correlation model, we first studied the marginal rate
distortion functions of the different local textures. These
marginal rate distortion functions were shown to be quite
distinct from each other. Classical results in information
theory were utilized to derive the conditional rate distortion
function when the universal side information of local textures
is available at both the encoder and the decoder. We demon-
strated that by involving this side information, the lowest
rate that is theoretically achievable in intra-frame video
compression can be as much as 1 bit per pixel lower than that
without the side information. This rate distortion bound with
local texture information taken into account while making
no assumptions on coding, was shown indeed to be a valid
lower bound with respect to the operational rate distortion
curves of intra-frame coding in AVC/H.264.

In this paper we extend the correlation coefficient model-
ing and rate distortion analysis from pixels within one video
frame to pixels that are located in nearby video frames. The
correlation coefficient of two pixels in two nearby video
frames, denoted by ρ, is modeled as the product of ρ s, the
texture dependent spatial correlation coefficient of these two
pixels, as if they were in the same frame, and ρ t, a variable
to quantify the temporal correlation between these two video
frames. We show that for two pixels located in nearby video
frames, their spatial correlation and their temporal correlation
are approximately independent. Therefore ρ t does not depend
on the textures of the blocks the two pixels are located in
and is a function of the indices of the two frames. With
ρt calculated for the nearby frames of a video, we again
derive the conditional rate distortion function when the side
information of local textures is available at both the encoder
and decoder. We demonstrate that by involving this side
information, the lowest rate that is theoretically achievable
in inter-frame video compression can be as much as 0.7 bit
per pixel lower than that without the side information. This
rate distortion bound with local texture information taken
into account while making no assumptions on coding, is
shown indeed to be a valid lower bound with respect to the
operational rate distortion curves of inter-frame coding in
AVC/H.264.

REFERENCES

[1] A. Habibi and P. A. Wintz, “Image coding by linear transformation
and block quantization,” IEEE Transactions on Communication Tech-
nology, vol. Com-19, no. 1, pp. 50–62, Feb. 1971.

[2] J. B. O’neal Jr. and T. R. Natarajan, “Coding isotropic images,” IEEE
Transactions on Information Theory, vol. IT-23, no. 6, pp. 697–707,
Nov. 1977.

[3] J. Hu and J. D. Gibson, “New block-based local-texture-dependent
correlation model of digitized natural video,” Proceedings of the
Fortieth Asilomar Conference on Signals, Systems, and Computers,
Oct. 2006.



(a) Frames 1 and 2 (b) Frames 1, 2 and 3

(c) Frames 1, 2, 3 and 4 (d) Frames 1, 2, 3, 4 and 5

Fig. 8. Theoretical rate distortion bounds and the rate distortion curves of inter-frame coding in AVC/H.264

[4] ——, “New rate distortion bounds for natural videos based on a
texture dependent correlation model,” IEEE International Symposium
on Information Theory, Jun. 2007.

[5] G. Tziritas, “Rate distortion theory for image and video coding,”
International Conference on Digital Signal Processing, Cyprus, 1995.

[6] B. Girod, “The efficiency of motion-compensating prediction for
hybrid coding of video sequences,” IEEE Journal on selected areas
in communications, vol. SAC-5, no. 7, pp. 1140–1154, Aug. 1987.

[7] A. Ortega and K. Ramchandran, “Rate-distortion methods for image
and video compression,” IEEE Signal Processing Magazine, vol. 15,
no. 6, p. 2350, Nov. 1998.

[8] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using
quadratic rate distortion model,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 7, no. 1, pp. 246–251, Feb. 1997.

[9] H.-J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for
MPEG-4 video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 10, no. 6, pp. 878–894, Sep. 2000.

[10] J. Ribas-Corbera and S. Lei, “Rate control in DCT video coding
for low-delay communications,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 9, no. 1, pp. 172–185, Feb. 1999.

[11] S. Ma, W. Gao, and Y. Lu, “Rate control on JVT standard,” Joint Video
Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, JVT-D030, Jul. 2002.

[12] Z. G. Li, F. Pan K. P. Lim, X. Lin and S. Rahardj, “Adaptive
rate control for h.264,” IEEE International Conference on Image
Processing, pp. 745–748, Oct. 2004.

[13] Y. Wu et al., “Optimum bit allocation and rate control for H.264/AVC,”
Joint Video Team of ISO/IEC MPEG & ITU-T VCEG Document, vol.
JVT-O016, Apr. 2005.

[14] D.-K. Kwon, M.-Y. Shen and C.-C. J. Kuo, “Rate control for H.264
video with enhanced rate and distortion models,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no. 5, pp.
517–529, May 2007.

[15] G. J. Sullivan and T. Wiegand, “rate-distortion optimization for video
compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp.
74–90, Nov. 1998.

[16] Z. He and S. K. Mitra, “From rate-distortion analysis to resource-
distortion analysis,” IEEE Circuits and Systems Magazine, vol. 5,
no. 3, pp. 6–18, Third quarter 2005.

[17] Y. K. Tu, J.-F. Yang and M.-T. Sun, “Rate-distortion modeling for
efficient H.264/AVC encoding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 17, no. 5, pp. 530–543, May 2007.

[18] R. Zhang, S. L. Regunathan, and K. Rose, “Video coding with optimal
inter/intra-mode switching for packet loss resilience,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 6, pp. 966–976, 2000.

[19] R. C. Reininger and J. D. Gibson, “Distributions of the two-
dimensional DCT coefficients for images,” IEEE Transactions on
Communications, vol. 31, pp. 835–839, Jun. 1983.

[20] S. R. Smoot and L. A. Rowe, “Study of DCT coefficient distributions,”
SPIE Symposium on Electronic Imaging, San Jose, CA, vol. 2657, Jan.
1996.

[21] W. Ding and B. Liu, “Rate control of MPEG video coding and record-
ing by rate-quantization modeling,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, no. 1, pp. 12–20, Feb. 1996.

[22] H. M. Hang and J. J. Chen, “Source model for transform video coder
and its application part (I): Fundamental theory,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 7, p. 1997, Apr.
287298.

[23] Z. He and S. K. Mitra, “A unified rate-distortion analysis framework
for transform coding,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, pp. 1221–1236, Dec. 2001.

[24] L.-J. Lin and A. Ortega, “Bit-rate control using piecewise approxi-
mated rate-distortion characteristics,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 4, pp. 446–459, Aug.
1998.



[25] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video
transmission over lossy channels,” IEEE Journal on Selected Areas in
Communications, vol. 18, no. 6, Jun. 2000.

[26] M. van der Schaar, S. Krishnamachari, S. Choi, and X. Xu, “Adaptive
cross-layer protection strategies for robust scalable video transmission
over 802.11 WLANs,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 10, pp. 1752–1763, Dec. 2003.

[27] M. Wang and M. van der Schaar, “Model-based joint source channel
coding for subband video,” IEEE Signal Processing Letters, vol. 13,
no. 6, Jun. 2006.

[28] ——, “Operational rate-distortion modeling for wavelet video coders,”
IEEE Transactions on Signal Processing, vol. 54, no. 9, Sep. 2006.

[29] C. Hsu, A. Ortega, and M. Khansari, “Rate control for robust video
transmission over burst-error wireless channels,” IEEE Journal on
Selected Areas in Communications, Special Issue on Multimedia
Network Radios, vol. 17, no. 5, pp. 756–773, May 1999.

[30] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, pp. 560–576, Jul.
2003.

[31] R. M. Gray, “A new class of lower bounds to information rates
of stationary sources via conditional rate-distortion functions,” IEEE
Tran. Inform. Theory, vol. IT-19, no. 4, pp. 480–489, Jul. 1973.

[32] T. M. Cover and J. A. Thomas, Elements of information theory.
Wiley-Interscience, 1991.


