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Abstract—Recently we proposed a block-based conditional
correlation coefficient model for natural videos in the spatial-
temporal domain. The conditioning is on local texture and
the optimal parameters can be calculated for a specific video
with a mean absolute error (MAE) usually smaller than 5%.
We used this conditional correlation model and the classic
results on conditional rate distortion functions to calculate
new theoretical rate distortion bounds for videos which appear
to be the only valid theoretical rate distortion bounds with
regard to the current cutting-edge video compression technologies
such as those standardized in AVC/H.264. In this paper, we
focus on utilizing the new block-based local-texture-dependent
correlation model to derive rate distortion bounds for blocking
and optimal prediction across neighboring blocks. We study the
penalty paid in average rate when the correlation among the
neighboring blocks is discarded completely or is incorporated
partially through predictive coding. We calculate the thresholds
in average rate and distortion when incorporating the correlation
among the neighboring blocks through optimal predictive coding
becomes worse than completely discarding this correlation. We
also discuss the role of local texture in inter-frame prediction.

I. INTRODUCTION

Parsimonious statistical models of natural images and
videos can be used to calculate the rate distortion functions
of these sources as well as to optimize particular image
and video compression methods. Although they were studied
extensively in the 1970s and 1980s, the statistical models and
their corresponding rate distortion theories have fallen behind
the fast advancing image and video compression schemes
of the past two decades. In this period, the emphasis of
rate distortion analysis for images and videos has been on
setting up operational models for practical image and video
compression systems to realize rate control [1]–[7] and to
implement quality optimization algorithms [8]–[12]. In the
meantime studying the theoretical rate distortion bounds for
images and videos is often considered infeasible [9].

Recently we revisited the classic problem of developing a
correlation model for natural videos by proposing a block-
based local-texture-dependent correlation coefficient model for
natural videos in the spatial-temporal domain. We define the
correlation coefficient of two pixels in two nearby video
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frames as the product of the spatial correlation coefficient of
these two pixels, as if they were in the same frame, and a
variable to quantify the temporal correlation between these
two video frames. The spatial correlation model for pixels
within one video frame is a conditional correlation model. The
conditioning is on local texture and the optimal parameters
can be calculated for a specific video with a mean absolute
error (MAE) usually smaller than 5%. We use this conditional
correlation model to calculate the conditional rate distortion
function when universal side information on local texture is
available at both the encoder and the decoder. We demonstrate
that this side information, when available, can save as much
as 1 bit per pixel for a single video frame and 0.5 bits per
pixel for multiple video frames. This rate distortion bound with
local texture information taken into account while making no
assumptions on coding, is shown indeed to be a valid lower
bound with respect to the operational rate distortion curves of
both intra-frame and inter-frame coding in AVC/H.264. The
results also suggest a potential coding efficiency improvement
in video codec design by involving texture information even
for inter-coded frames.

In this paper, we focus on utilizing the new block-based
local-texture-dependent correlation model to derive rate distor-
tion bounds for blocking and optimal prediction across neigh-
boring blocks. The “blocking” scheme, referring to breaking
an image frame into 16 × 16 pixel MBs and processing one
MB at a time, has been employed in the most popular image
coding standards such as JPEG and almost all video coding
standards such as MPEG-2/4 and the H.26x series [13]–[16].
In AVC/H.264 a new coding technique called intra-frame
prediction is integrated to reduce the spatial redundancy in
the intra-coded frames. Blocking and intra-frame prediction
have opposite effects on compression efficiency since blocking
completely disregards the correlation among the neighboring
blocks while intra-frame prediction restores, partially, this
correlation. With the new block-based local-texture-dependent
correlation model, an explicit study of the rate distortion
behavior of these two key coding schemes is feasible. In
this paper we study the penalty paid in average rate when
the correlation among the neighboring MBs or blocks is
disregarded completely by blocking or is incorporated partially
through the predictive coding.

The remainder of this paper is organized as follows. In
Section II we review the novel new correlation model based



on local texture and the theoretical rate distortion bound with
the local texture as the side information. This section ends
on a discussion of the role of local texture in inter-frame
prediction. In Section III we derive the rate distortion bounds
for the blocking scheme alone and in Section IV we derive the
rate distortion bounds for blocking and prediction across the
blocks. These various rate distortion bounds are compared to
the operational rate distortion curves of intra-frame and inter-
frame coding in AVC/H.264 throughout Sections II-IV. We
conclude this paper and provide insights into future research
in Section V.

II. A TEXTURE DEPENDENT CORRELATION MODEL AND

THEORETICAL RATE DISTORTION BOUNDS FOR VIDEOS

We assume that all pixel values within one natural video
form a three dimensional Gaussian random vector with mem-
ory, and each pixel value is of zero mean and the same variance
σ2. To quantify the effect of the surrounding pixels on the
correlation between pixels of interest, we utilize the concept
of local texture, which is simplified as local orientation, i.e.,
the axis along which the luminance values of all pixels in
a local neighborhood have the minimum variance. The local
texture is similar to the intra-prediction modes in AVC/H.264,
but with a generalized block size and an arbitrary number of
total textures. The block can have any rectangular shape as
long as its size is small compared to the size of the image. To
calculate the local texture of a block, we employ the pixels
on the top and to the left of this block as surrounding pixels.
Once the block size and the available local textures are fixed,
the local texture of the current block is chosen as the one
that minimizes the mean absolute error (MAE) between the
original block and the prediction block constructed based on
the surrounding pixels and the available local textures. It is
important to point out that even through we choose a very
simple and computationally inexpensive way to calculate the
local texture, there are other, more sophisticated schemes of
doing so, as summarized in [17], which should produce even
better results in correlation modeling.

The following is the formal definition of the new correlation
coefficient model that is dependent on the local texture.

Definition 2.1: The correlation coefficient of two pixel
values within a digitized natural video, with spatial offsets
∆i and ∆j, and temporal offset ∆k, is defined as

ρ(∆i,∆j, ∆k|y1, y2) = ρs(∆i,∆j|y1, y2)ρt(∆k). (II.1)

ρs(∆i,∆j|y1, y2) is the spatial correlation coefficient and

ρs(∆i,∆j|y1, y2) =
ρs(∆i,∆j|y1) + ρs(∆i,∆j|y2)

2
, (II.2)

where

ρs(∆i,∆j|y) = a(y) + b(y)e−|α(y)∆i+β(y)∆j|γ(y)

. (II.3)

y1 and y2 are the local textures of the blocks the two pixels
are located in, and the parameters a, b, α, β and γ are
functions of the local texture y. We restrict b(y) ≥ 0 and

a(y) + b(y) ≤ 1. ρt(∆k) quantifies the temporal correlation
and can be calculated by averaging the approximate temporal
correlation coefficients ρ̂t(∆k |y), over all local texture y’s.

For each local texture, we choose the combination of the five
parameters a, b, α, β and γ that jointly minimizes the MAE
between the approximate correlation coefficients, averaged
among all the blocks in a video frame that have the same
local texture, denoted by ρ̂s(∆i,∆j|y), and the correlation
coefficients calculated using the new model, ρ s(∆i,∆j|y).
These optimal parameters for one frame in Paris.cif and their
corresponding MAEs are presented in Table I. (The local
textures are calculated for each one of the 4 by 4 blocks; the
available local textures are chosen to be those implemented
in AVC/H.264; ∆i and ∆j range from −7 to 7.) We can see
from this table that the parameters associated with the new
model are quite distinct for different local textures while the
MAE is always less than 0.05.

TABLE I
THE OPTIMAL PARAMETERS FOR ONE FRAME IN PARIS.CIF AND THEIR

CORRESPONDING MEAN ABSOLUTE ERRORS (MAES)

Paris.cif
a b γ α β MAE

texture #0 0.3 0.6 0.7 0.0 0.6 0.022
texture #1 0.3 0.6 0.9 -0.2 0.0 0.024
texture #2 0.6 0.3 0.9 0.0 -0.1 0.035
texture #3 0.6 0.3 0.9 -0.2 -0.1 0.043
texture #4 0.6 0.3 0.7 0.1 -0.2 0.034
texture #5 0.6 0.3 0.7 0.2 -0.6 0.028
texture #6 0.6 0.4 0.5 -1.3 0.4 0.026
texture #7 0.6 0.4 0.5 0.4 1.1 0.030
texture #8 0.6 0.4 0.6 0.4 0.1 0.046

In Fig. 1 we plot ρ̂s(∆i,∆j|y) (shown in the plots as the
loose surfaces, i.e., the mesh surfaces that look lighter with
fewer data points ) and ρs(∆i,∆j|y) (shown in the plots as
the dense surfaces, i.e., the mesh surfaces that look darker
with more data points) of all the local textures for the same
image from paris.cif using the optimal parameters. We can
see that the new spatial correlation model does capture the
dependence of the correlation between two pixels on the local
texture and fits the average approximate correlation coeffi-
cients ρ̂s(∆i,∆j|y) very well. In [18] we further compare
the optimal values of the parameters a, b, α, β and γ and
their respective MAEs for different videos, different frames
throughout the same video, and for different block sizes and
different spatial offsets ∆i’s and ∆j’s.

Having established the correlation model, we construct the
video source in a frame k by two parts: X k as an M by N
block (row scanned to form an MN by 1 vector) and S k as
the surrounding 2M +N +1 pixels (2M on the top, N to the
left and the one on the left top corner, forming a 2M +N +1
by 1 vector). If we investigate the rate distortion bounds of a
few frames k1, k2, . . . , kl, the video source across all these



Fig. 1. The loose surfaces (the mesh surfaces that look lighter with less data points) are ρ̂s(∆i, ∆j|y), the approximate correlation coefficients of two
pixel values in the first frame from paris.cif, averaged among the blocks that have the same local texture; the dense surfaces (the mesh surfaces that look
darker with more data points) are ρs(∆i, ∆j|y), the correlation coefficients calculated using the proposed conditional spatial correlation model, along with
the optimal set of parameters

frames is defined as a long vector V , where

V = [XT
k1

, ST
k1

, XT
k2

, ST
k2

, . . . , XT
kl

, ST
kl

]T . (II.4)

For the local textures we use a variable Y to denote the
information of local textures formulated from a collection
of natural videos and Y is considered as universal side
information available to both the encoder and the decoder.
We only employ the first order statistics of Y , P [Y = y], i.e.,
the frequency of occurrence of each local texture in the natural
videos. In simulations, when available, P [Y = y] is calculated
as the average over a number of natural video sequences
commonly used as examples in video coding studies.

The rate distortion bound of the video source V without
taking into account the texture Y as side information, de-
picted by Rno texture(D), is a straightforward rate distortion
problem of a source with memory which has been studied
extensively. The rate distortion bound with the local texture
as side information is a conditional rate distortion problem of
a source with memory. It is defined as [19, Sec. 6.1]

RV |Y (D) = min
p(v̂|v,y):d(V ,V̂ |Y )≤D

I(V ; V̂ |Y ). (II.5)

It can be proved [20] that the conditional rate distortion

function in Eq. (II.5) can also be expressed as

RV |Y (D) = min
D′

ys:
∑

y Dyp(y)≤D

∑

y

RV |y(Dy)p(y), (II.6)

and the minimum is achieved by adding up RV |y(Dy), the
individual, also called marginal, rate-distortion functions, at
points of equal slopes of the marginal rate distortion functions,
i.e., when

∂RV |y(Dy)

∂Dy
are equal for all y and

∑

y DyP [Y =

y] = D. These marginal rate distortion bounds can also be
calculated using the classic results on the rate distortion bound
of a Gaussian vector source with memory and a mean square
error criterion, where the correlation matrix of the source is
dependent on local texture y.

In Fig. 2 we plot these marginal rate distortion bounds
for the first frame of paris.cif. This plot shows that the rate
distortion curves of the blocks with different local textures are
very different. Without the conditional correlation coefficient
model proposed in this paper, this difference could not be
calculated explicitly.

In Fig. 7 we plot the two rate distortion bounds RV |Y (D)
and Rno texture(D) as dashed and solid lines, respectively,
as well as the operational rate distortion functions of intra-
frame coding in AVC/H.264, for the first frame of paris.cif.
In AVC/H.264, for both intra-frame and inter-frame coding,
we choose the main profile with context-adaptive binary



Fig. 2. Marginal rate distortion functions for different local textures, RV |Y =y(Dy), for a frame in paris.cif

arithmetic coding (CABAC), which is designed to generate
the lowest bit rate among all profiles. Rate distortion optimized
mode decision and a full hierarchy of flexible block sizes from
MBs to 4x4 blocks are used to maximize the compression gain.
For the rate distortion bounds, we choose the block size 16x16
and the spatial offsets as from −16 to 16.

Comparing the two rate distortion bounds RV |Y (D) and
Rno texture(D) as dashed and solid lines, respectively, for
paris.cif in Fig. 7 shows that engaging the first-order statistics
of the universal side information Y saves at least 1 bit
per pixel at low distortion levels (distortion less than 25,
PSNR higher than 35 dB), which corresponds to a reduction
of about 100 Kbits per frame for the CIF videos and 1.5
Mbps if the videos only have intra-coded frames and are
played at a medium frame rate of 15 frames per second. This
difference decreases as the average distortion increases but
remains between a quarter of a bit and half a bit per pixel
at high distortion level (distortion at 150, PSNR at about 26
dB), corresponding to about 375 Kbps to 700 Kbps in bit
rate difference. Furthermore, the rate distortion bound without
local texture information, Rno texture(D), plotted as a solid
line, is higher than the actual operational rate distortion curve
of intra-frame coding in AVC/H.264 at all distortion levels.
The rate distortion bound with local texture information taken
into account while making no assumptions in coding, i.e.,
RV |Y (D), as in Eq. (II.5), plotted as a dashed line, is indeed
a lower bound with respect to the operational rate distortion
curves of intra-frame coding in AVC/H.264.

In Fig. 4 we plot the two rate distortion bounds RV |Y (D)
and Rno texture(D) as dashed and solid lines, respectively, as

Fig. 3. Comparison of the rate distortion bounds and the operational rate
distortion curves of paris.cif intra-coded in AVC/H.264

well as the operational rate distortion functions of inter-frame
coding in AVC/H.264, for the first few frames in paris.cif.
As shown in Fig. 4, the rate distortion bound without local
texture information, plotted as solid lines, are higher than,
or intersect with, the actual operational rate distortion curve
of AVC/H.264. The rate distortion bounds with local texture
information taken into account while making no assumptions
in coding, plotted as dotted lines, are indeed lower bounds with
respect to the operational rate distortion curves of AVC/H.264.
comparing the two rate distortion bounds RV |Y (D) and
Rno texture(D) in Fig. 4(a) shows that by engaging the first-
order statistics of the universal side information Y saves 0.5
bit per pixel at low distortion levels (distortion less than 25,
PSNR higher than 35 dB), which corresponds to a reduction



(a) Frames 1 and 2 (b) Frames 1, 2 and 3

(c) Frames 1, 2, 3 and 4 (d) Frames 1, 2, 3, 4 and 5

Fig. 4. Theoretical rate distortion bounds and the rate distortion curves of inter-frame coding in AVC/H.264

of about 50 Kbits per frame for the CIF videos and 750 Kbps
if the videos have a group of picture size equal to 2 and are
played at a medium frame rate of 15 frames per second. This
difference decreases as the average distortion increases but
remains 0.1 bit per pixel at high distortion level (distortion at
150, PSNR at about 26 dB), corresponding to about 150 Kbps
in bit rate difference.

Another interesting observation of Fig. 4 is that as more
video frames are coded, the actual operational rate distortion
curves of inter-frame coding in AVC/H.264 become closer and
closer to the theoretical rate distortion bound when no texture
information is considered. This is because in AVC/H.264,
only the intra-coded frames (i.e., only the 1 st frame in our
simulation) take advantage of the local texture information
through intra-frame prediction, while the inter-coded frames
are blind to the local texture information. Therefore, when
more frames are inter-coded, the bit rate saving achieved by
intra-frame prediction in the 1st frame is averaged over a larger
number of coded frames. This suggests a possible coding
efficiency improvement in video codec design by involving
texture information even for inter-coded frames.

III. RATE DISTORTION BOUNDS FOR BLOCKING ONLY

In this section we are interested in the penalty paid in
average rate when the correlation among the neighboring MBs

or blocks are discarded completely. The basic set up for this
section and the next section can be summarized in the block
diagram in Fig. 5. In this block diagram X denotes the M
by N block currently being processed in a video frame. The
surrounding 2M +N +1 pixels (2M on the top, N to the left
and the one on the left top corner), denoted by S, are used
to form a prediction block for each one of the available local
textures, as

Z = X − P
(A)
d S, (III.7)

where P
(a)
d is a M × N by 2M + N + 1 matrix, different

for each local texture. A is the local texture chosen for the
current block which yields the smallest prediction error. Z
and A are further coded and transmitted to the decoder, where
the predicted value is added in to obtain

X̂ = Ẑ + P
(Â)
d Ŝ. (III.8)

In this Section we use the separate distortion measure on X
and S since in video coding each MB is processed sequentially
and only local distortion is considered. The rate distortion
bounds calculated using a separate distortion measure should
be slightly higher than those when a joint distortion measure
on X and S is used.

The total rate to code X and S separately with a separate
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Fig. 5. Coding of one M by N block X and the surrounding 2M +N +1
pixels S

distortion constraint can be calculated as

Rblocking(D) =
RX (D)|X|+RS(D)|S|

|S|+|X| , (III.9)

which is simply the average of the rate distortion functions
of X and S. We plot Rblocking(D) as dotted lines in Fig.
6 for two videos paris.cif and football.cif. Not surprisingly
for both videos, coding S and X separately costs more bits
than coding them jointly. We also find out that the difference
in bit rate decreases as the block size increases, since for
smaller block sizes information on stronger correlation across
the blocks is disregarded. With the new correlation coefficient
model and the corresponding rate distortion curves, we can
calculate explicitly the bit rate increase caused by blocking.
For example, this penalty is one sixth bit per pixel in this plot
at all distortion levels in Fig. 6(a), which is quite significant.

IV. RATE DISTORTION BOUND FOR BLOCKING AND

OPTIMAL PREDICTION ACROSS NEIGHBORING BLOCKS

In this section we focus on the scenario when the video
frames are processed block by block sequentially but the
correlation among the blocks is utilized through predictive
coding. We shall restrict ourselves to the separate distortion
measure and therefore S is first coded with no consideration of
X. After that Z and A are calculated through intra-prediction
in Eq. (III.7). Therefore the rate distortion function for this
scenario is

RS,Z,A separately−withoutY (D) =

(

min
p(ŝ|s):

E[||S−Ŝ||2]
|S|

≤D
I(S; Ŝ)

+ min
p(ẑ,â|z,a,s,ŝ):

E[||X−X̂||2]
|X|

≤D
I(Z, A; Ẑ, Â)

)

/(|S| + |X|)

(IV.10)
If we restrict that A = Â, i.e., we code the local texture A

losslessly, the second part in Eq. (IV.10) becomes

min
p(ẑ,â|z,a,s,ŝ): 1

|X| E[||X−X̂||2]≤D
I(Z, A; Ẑ, Â) =

min
p(ẑ|z,a,s,ŝ): 1

|X|
E[||X−X̂||2]≤D

I(Z; Ẑ|A) + H(A),

(IV.11)
which forms an upper bound for all the scenarios when A is
coded either losslessly or subject to a fidelity criterion. Also
when A = Â, we have

E[||X − X̂ ||2] =
∑

a Pr(a)E[||(Z + P
(a)
d S) − (Ẑ + P

(a)
d Ŝ)||2|a]

=
∑

a
Pr(a)

∫

s

∫

ŝ

∫

z

∫

ẑ
p(z, ẑ, s, ŝ|a)(ẑ − z)T (ẑ − z)+

(ŝ − s)T P
(a)T
d P

(a)
d (ŝ − s) + 2(ŝ − s)T P

(a)T
d (ẑ − z)dsdŝdzdẑ.

(IV.12)
In order to investigate the lowest rate when predictive

coding is employed, we use the optimal linear predictor

(a) paris, block size 4x4

(b) football, block size 4x4

Fig. 6. Comparison of rate distortion bounds for two videos paris.cif and
football.cif

P
(a)
opt = E[XST |a](E[SST |a])−1 assuming that E(SST |a) is

non-singular. Since the source is assumed to be zero-mean
Gaussian, the optimal linear predictor is also the optimal
conditional mean predictor. The optimality is in the sense of
minimizing MSE of X. When the optimal linear predictor
P

(A)
opt is used, the cross-product term in Eq. (IV.12) disappears.

Let

D′
S =

∑

a

Pr(a)

∫

s

∫

ŝ

p(s, ŝ|a)(ŝ−s)T P
(a)T
opt P

(a)
opt (ŝ−s)dsdŝ.

(IV.13)
Eq. (IV.12) becomes

E[||X − X̂||2] = |Z|DZ + D′
S . (IV.14)

Since S is optimally coded without consideration of X as in
the first part of Eq. (IV.10), D ′

S is fixed as well. The constraint
on the distortion of Z becomes

DZ ≤ (|X |D − D′
S)/|Z|. (IV.15)

An upper bound for Eq. (IV.10), depicted by



Ropt-pred-upperbound, is thus

Ropt-pred-upperbound(D) = 1
|S|+|X|

(

|S|RS(D) + |Z|RZ|A(
|X|D−D′

S

|Z| ) + H(A)
) (IV.16)

The conditional rate distortion function RZ|A(DZ) in Eq.
(IV.16) is again calculated based on the “equal slope” theorem
of the marginal rate distortion functions RZ|A=a(Da) [20]. In
this case since the actual local texture A is coded without
any loss, the exact statistics of A are available at both the
encoder and the decoder; therefore, whether the universal side
information Y is available or not becomes insignificant. The
only complexity in computation is caused because E(SS T |a)
is usually singular when the direction of the local texture is
DC, horizontal, vertical, or too close to horizontal/vertical. In
these cases we use the pseudo-inverse matrix of E(SS T |a) in
the calculation.

Ropt-pred-upperbound(D) is also plotted in Fig. 6 for
the two videos paris.cif and football.cif. As seen from this
figure, the bit rate decrease from the dotted lines (coding S
and X separately, Eq. (III.9)) to the dash-dotted lines (the
upper bound of coding S, Z and A separately with optimal
prediction, Ropt-pred-upperbound(D)) is truly phenomenal in
both plots at low distortion levels. The bit rate difference is
about 1 bit per pixel for paris and between half a bit to 1 bit
per pixel for for football at distortion 25 (corresponding to
PSNR 35 dB). This bit rate saving decreases as the distortion
increases, and interestingly, it vanishes for football at certain
distortions. This is because spending bits coding the local
texture A losslessly becomes unjustifiable at high distortion
levels. This is especially true when the bit rate is low and
the processing block size is small. We can see that in Fig.
6(b) the dash-dotted line and the dotted line intersect at a
distortion of about 180, corresponding to an average rate of
0.4 bits per pixel. The average bit rate spent on coding the
local texture A losslessly is simply the entropy of A, divided
by the number of pixels per block, which is 16 in Fig. 6(b)
since 4× 4 blocks are investigated. This average rate is about
0.2 bits per pixel, or 50% of the total average rate. This is
to say that for this particular video football.cif, processed in
4 × 4 blocks, 0.4 bits per pixel is the threshold in average
rate that depicts when incorporating the correlation among
the neighboring blocks through optimal predictive coding and
coding the local texture A losslessly, becomes worse than
discarding the correlation among the neighboring blocks. This
crossover average rate is different for different videos and
different processing blocksizes. It can be calculated along with
the rate distortion bounds we derive in this paper and be
utilized in real video codecs.

In Fig. 7 we plot the three rate distortion bounds derived
in this paper for paris.cif and the operational rate distortion
functions for paris.cif intra-coded in AVC/H.264. As shown
in Fig. 7, the rate distortion bound calculated based on the
new texture dependent correlation model for the scenario
where optimal predictive coding is engaged to code S, Z
and A separately with separate distortion constraint, i.e.,

Ropt-pred-upperbound(D) as in Eq. (IV.16), plotted as a dash
dotted line, is a reasonably tight lower bound, especially at
medium to high distortion levels. In Fig. 8(a) we plot this
lower bound Ropt-pred-upperbound(D) (Eq. (IV.16)) and the
operational rate distortion function using AVC/H.264 for two
other videos. We can see that although the lower bounds are
calculated based on only five parameters generated from each
video, they do agree with the operational rate distortion curves
of the corresponding video reasonably well. If we further plot
these lower bounds as average rate per pixel versus PSNR of
a video frame as in Fig. 8(b), the lower bounds appear to be
nearly linear which shows promises in codec design.

Fig. 7. Comparison of the rate distortion bounds and the operational rate
distortion curves of paris.cif intra-coded in AVC/H.264

V. CONCLUSIONS

We utilize a recently proposed block-based local-texture-
dependent correlation model to derive rate distortion bounds
for blocking and optimal prediction across neighboring blocks.
We study the penalty paid in average rate when the correla-
tion among the neighboring blocks is discarded completely
or is incorporated partially through predictive coding. We
calculate the thresholds in average rate and distortion when
incorporating the correlation among the neighboring blocks
through optimal predictive coding becomes worse than com-
pletely discarding this correlation. We also discuss the role
of local texture in inter-frame prediction. All of these results
are derived from a correlation model in the spatial-temporal
domain of videos that is independent of any other specific
video coding scheme and therefore are very different from the
operational rate distortion analysis of videos.
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