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Abstract—In this paper, we propose a new statistical objective
perceptual video quality measure PSNRr,f -MOSr . PSNRr,f

is defined as the PSNR achieved by f% of the frames in
each one of the r% of the transmissions over a network. This
quantity has the potential to capture the performance loss due
to damaged frames in a particular video sequence (f%), as well
as to indicate the probablity of a user experiencing a specified
quality over the channel (r%). The percentage of transmissions
also has the interpretation as what percentage out of many video
users who access the same channel, would experience a given
video quality. A subjective experiment is conducted to establish
a linear equation connecting PSNRr,f=90% and MOSr , the
mean opinion score (MOS) achieved by r% of the transmissions.
It is shown from this subjective experiment that PSNRf=90%

correlates much better with the delivered perceptual video quality
than the average PSNR across all frames of a video, and is a
good representation of perceptual quality of a video transmitted
over networks with possible transmission errors.

I. INTRODUCTION

Over the past two decades, digital video compression and
communication have fundamentally changed the way we
create, communicate and consume visual information. As a
vital part of the fast advancing video technologies, perceptual
quality measurement of video sequences has also attracted a
significant amount of interest.

The perceptual video quality measures are usually divided
into two categories: subjective measures and objective mea-
sures. Subjective video quality measures provide an ultimate
measure of the viewers’ satisfaction with a delivered video.
They involve a large number of experiments on human subjects
and therefore are expensive, time-consuming and can not be
conducted in real time. The conventional and most commonly
used objective video quality measure is the mean squared error
(MSE) or equivalently the peak signal to noise ratio (PSNR)
of the distorted videos. Although very easy to compute, MSE-
PSNR is often criticized for correlating poorly to perceptual
video quality. The recently proposed sophisticated perceptual
video quality measures, such as those included in International
Telecommunication Union (ITU) recommendations ITU-R

This research has been supported by the California Micro Program, Applied
Signal Technology, Cisco, Dolby Labs, Inc., Sony-Ericsson, and Qualcomm,
Inc., and by NSF Grant Nos. CCF-0429884, CNS-0435527, and CCF-
0728646.

Jing Hu and Sayantan Choudhury were with the Department of Electrical
and Computer Engineering, University of California, Santa Barbara. Jing
Hu is now with the Digital Signal Processing Group, Cisco Systems and
Sayantan Choudhury is now with the Consumer Systems and Technology,
Sharp Laboratories of America. Jerry D. Gibson is with the Department of
Electrical and Computer Engineering, University of California, Santa Barbara
(emails: jinghu@cisco.com; {sayantan,gibson}@ece.ucsb.edu).

BT.1683 [1] and ITU-T J.144 [2], are based on comprehensive
studies of the human vision system (HVS). They examine
the perceptual impacts of the compression artifacts and are
shown to perform better than the average PSNR across the
video frames for a compressed video [3]. However, these
sophisticated objective measures are computationally very
intensive [4], [5] and normally can only be implemented by
using proprietary software. These two features have largely
limited their usage in both research and implementation.

These sophisticated objective measures are challenged fur-
ther when we investigate the end-to-end quality of videos
transmitted over ubiquitous networks. First, for video delivered
over networks that might incur packet errors and packet
losses, the quality degradation due to compression can be
overwhelmed by the quality degradation caused by the possible
transmission errors, even with error concealment at the video
decoder. In this case, the subtle improvement in accuracy made
by using the sophisticated objective measures becomes less
significant compared to the large variance of the delivered
video quality. Second, due to the design in network protocols
and the nature of some transmission channels such as multi-
path fading in wireless local area networks (WLANs), video
distortion caused by transmission errors is not deterministic.
As a result, a video user’s experience with a network of fixed
topology and configuration is probabilistic; multiple video
users accessing the same network at the same time could
experience totally different video quality.

In this paper, we propose a new statistical objective video
quality measure that (a) is as easy to compute as average
PSNR; (b) is a good representation of perceptual quality of
a video transmitted over networks with possible transmission
errors; and (c) addresses the randomness in video quality deliv-
ered over a network. We call this multiuser perceptual video
quality measure PSNRr,f -MOSr. PSNRr,f is defined as
the PSNR achieved by f% of the frames in each one of the
r% of the transmissions over a network. This quantity has
the potential to capture the performance loss due to damaged
frames in a particular video sequence (f%), as well as to
indicate the probablity of a user experiencing a specified
quality over the channel (r%). The percentage of transmissions
also has the interpretation as what percentage out of many
video users who access the same channel, would experience a
given video quality. We further investigate the correspondence
between PSNRf and perceptual video quality through a
subjective experiment which results in a linear equation con-
necting PSNRr,f=90% and MOSr, the mean opinion score
(MOS) achieved by r% of the transmissions. It is shown from



this subjective experiment that PSNRf=90% correlates much
better with the delivered perceptual video quality than the
average PSNR across all frames of a video, while with no extra
computatation. The MOS calculated from PSNRf is shown
to be sufficient to indicate the perceptual quality of a delivered
video sequence, without the huge computation required by the
more sophisticated video quality measurements.

PSNRr,f -MOSr is motivated by a simulation of
AVC/H.264 [6] coded videos over IEEE 802.11a WLANs [7]
with multipath fading. In this simulation, it is observed that
even when the average PSNR over all transmitted frames of
a video with packet losses is reasonably high, PSNRs vary
significantly across the video frames. Furthermore, the video
quality varies dramatically across the different transmissions
over the channel. This new mutliuser perceptual video quality
measure, however, can be utilized in other video commu-
nication applications that are different from the simulation
scenario.

II. MOTIVATION: AN AVC/H.264 VIDEO OVER 802.11A

WLAN SIMULATION

To demonstrate the huge variances of the video quality
across the different frames of a delivered video and across
different transmissions of the same network, we simulate the
transmission of AVC/H.264 coded videos over IEEE 802.11a
WLANs. The details of the simulation setup are described
below.

A. Simulation Setup

Video Codec: We choose the Baseline Profile of AVC/H.264
in its reference software [8] version JM10.1 with low delay
and low computational complexity. Ninety frames each from a
group of videos, representing different types of video content,
are coded using combinations of group of picture sizes (GOPS)
(10, 15, 30, 45 frames), quantization parameters (QP) (26
for fine quantization and 30 for coarse quantization) and
payload sizes (PS) (small-100 bytes and large-1100 bytes).
The remainder of the encoder parameters are optimally chosen
in the encoder to yield the minimum source bit rate. We do
not employ rate control schemes to dynamically choose QPs
to compress the video sequences at a constant bit rate. Instead
we use a constant QP throughout a video sequence. However,
if a rate control scheme is to be adapted, the variance of the
video quality will be even larger than the constant QP case to
maintain a relatively stable bit rate.

IEEE 802.11a WLAN: We consider one-hop WLANs, in
which case we limit our attention to the PHY, MAC and
APP layers. In the medium access control (MAC) layer of
IEEE 802.11, a cyclic redundancy check (CRC) is computed
over the entire packet, and if a single bit error is detected,
the packet is discarded. For data, a retransmission would
be requested, however, for our particular video applications
we do not request a retransmission, but rely on packet loss
concealment. Each realization of the multipath delay profile
corresponds to a certain loss pattern for that fading realization.
Two hundred and fifty packet loss realizations are generated

for each combination of the chosen PHY data rate 6 Mbps,
different average channel SNRs (3.5 dB for bad channel, 5 dB
for average channel, 7 dB for good channel), and two video
payload sizes (small–100 bytes and large–1100 bytes).

Multipath Fading Channel: The Nafteli Chayat model [9],
an important indoor wireless channel model with an exponen-
tially decaying Rayleigh faded path delay profile, is employed.
The rms delay spread used is 50 nanoseconds, which is
typical for home and office environments. In order to estimate
the packet error rate under different channel conditions, we
modify a readily available OFDM simulator for the IEEE
802.11a PHY [10]. Non-fading channels are also considered
for comparison. Noise is modeled as additive white Gaussian
noise (AWGN) for both the fading and non-fading cases. The
decoding at the receiver is based on soft decision Viterbi
decoding. We assume perfect synchronization and channel
estimation.

Packet Corruption and Loss Concealment: Each compressed
bit stream is corrupted based on the packet loss patterns
generated by the multipath fading channel and then recon-
structed in the AVC/H.264 decoder with its nominal packet
loss concealment (PLC) scheme. Different PLC schemes will
have an impact on the concealed video quality and there
exists an exhaustive literature proposing different error con-
cealment techniques. However, only a few simple schemes are
commonly used in practical applications [11]. As a baseline,
we apply the basic PLC method integrated in AVC/H.264
reference software [8]. This PLC method recovers the missing
MBs in an I frame through spatial interpolation and the
missing MBs in a P frame by searching and copying the most
likely MBs in the correctly received reference frames. The
previous frame is copied when the whole frame is lost. This
method is shown to be effective in both PSNR and perceptual
quality [12].

B. Simulation Results

We obtain a PSNR for each frame and each packet loss
pattern, for a combination of the codec and channel parame-
ters. Only the PSNR of the luminance component of the video
sequences is considered and the peak signal amplitude picked
in this paper is 255. Figure 1 plots the PSNRs of each frame
of the video silent.cif coded at QP = 26 and 30, GOPS =
15, PS = 100 for 100 realizations of the multipath fading
channel of average SNR 7 dB and AWGN channel of SNR
3 dB, respectively, when PHY data rate 6 Mbps is used. The
thick lines in each plot represent the average PSNRs across
the 100 channel realizations. This average should be slightly
different than the PSNR calculated from averaging the MSEs.
In practice, however, there is no significant difference between
the two definitions [13].

It is clear in Fig. 1 that even for the same video, coded
using the same parameters for the same average channel
SNR, the quality of the delivered video in terms of PSNR
varies significantly across different channel realizations. The
plots in Fig. 1 are typical for all of the videos and codec
parameters we tested. PSNRs also can vary dramatically from



(a) QP=26, fading channel (b) QP=26, AWGN channel

(c) QP=30, fading channel (d) QP=30, AWGN channel

Fig. 1. PSNRs of each frame of the video silent.cif over 100 realizations of both multipath fading channels and AWGN channels. The thick lines in each
plot represent the average PSNRs across the 100 channel realizations

one frame to another in the same processed video sequence.
In Figs. 1(a) and 1(c), the realizations that have no packet loss
overlap and form the lines marked with “+”. For the AWGN
channel, all realizations have similar packet loss rates (PLR).
However, because of the prediction employed in video coding,
it is shown in Figures 1(b) and 1(d) that the realizations of
similar PLR can generate completely different concealed video
quality. This suggests that the average PSNR across all the
frames and all the realizations is not a suitable indicator of the
quality a video user experiences with a network with possible
packet losses.

III. DEFINITION OF PSNRr,f AND ITS CORRESPONDENCE

TO PERCEPTUAL QUALITY OF MULTIPLE USERS MOSr

As shown in Section II and in particular in Fig. 1, for video
communication over networks with possible packet errors,
the PSNRs of the delivered videos vary significantly across
the video frames and across the different realizations of the
channel. In order to capture the distribution of the distortion
across the video frames and channel uses, in this section
we propose a statistical PSNR based video quality measure,
PSNRr,f , which is defined as the PSNR achieved by f% of
the frames in each one of the r% of the realizations. Parameter
r captures the reliability of a channel over many users and
can be set as a number between 0% to 100% according to the
desired consistency of the user experience.

The proposal of using PSNRf , i.e., the lowest PSNR
achieved by f% (usually set as a majority) of the frames in
a single video sequence, to measure the perceptual quality of
a single video sequence is based on three observations that

are recognized by researchers in video quality assessment [5]:
1) the frames of poor quality in a video sequence dominate
human viewers’ experience with the video; 2) however, if only
a very small portion of the video frames are of poor quality,
the quality drop due to these few frames are not perceivable
by the human viewers ; 3) when the PSNRs are higher than a
threshold, increasing PSNR does not correspond to an increase
in perceptual quality that is already excellent at the threshold.

To confirm these observations, i.e., to study the correlation
between PSNRf and the perceptual quality of videos, as well
as to find a suitable range for the parameter f , a subjective
experiment is designed and conducted. Stimulus-comparison
methods [14] are used in this experiment, where two video
sequences of the same content were presented to the subjects
side by side and were played simultaneously. The video on the
left is considered to be of perfect quality while the video on
the right is compressed and then reconstructed with possible
packet loss and concealment. Three naive human subjects are
involved in this experiment. They are asked to pick a number
representing the perceptual quality of the processed video
compared to the perfect video from the continuous quality
scale shown in Figure 2. Fifty video pairs were tested and 20%
of them appear twice in this experiment to test the consistency
of the subjects’ decisions.

Figure 3 plots the opinion scores given by the three subjects
in circles (′o′), dots (′·′) and crosses (′+′). Of the 50 tested
videos, 18 are silent.cif, reconstructed from different levels
of packet losses. They are arranged from left to right with
ascending average of three subjects’ opinion scores. The same



Fig. 3. The opinion scores given by the three subjects and the the best linear mappings of PSNRf=90% and average PSNR. Of the 50 tested videos, 18
are silent.cif, 16 are paris.cif and 16 are stefan.cif, reconstructed from different levels of packet losses. They are arranged from left to right with ascending
average of three subjects’ opinion scores.

Fig. 2. Perceptual video quality scale in MOS

is done for the 16 videos of paris.cif and the 16 videos of
stefan.cif. For each tested video, the PSNRs are calculated for
each frame, from which both average PSNR across all frames
and PSNRf with f as any value can be further calculated.
Since the PSNRs and the opinion scores are of different scales,
in order to compare them, the average PSNR and PSNR f

with f ranging from 0.5 to 0.99 are mapped to the opinion
scores through linear functions which yield the minimum mean
square errors in the fit.

We find that among all the values of f we investigate,
PSNRf with f = 90% correlates to the opinion scores
the best, whose linear mapping is plotted as solid lines in
Fig. 3. We also plot the best linear mapping of average
PSNRs in dashed lines for comparison. As seen from these
curves, PSNRf=90% correlates significantly better than av-
erage PSNR, to the perceptual quality for all three videos
that are given in circles ( ′o′), dots (′·′) and crosses (′+′) for
each video. The average PSNR underestimates the quality
at high quality level and overestimates the quality at low
quality level. This is because average PSNR treats all frames
equally. At high quality level, however, only a few frames with

relatively lower quality bring down the average PSNR but do
not affect the perceptual quality. At low quality level, on the
other hand, there are frames with extremely bad quality which
affect the overall video quality significantly while the average
PSNR is still quite high. This subjective experiment shows that
PSNRr,f can serve as an effective video quality measure,
and that f should be set around 90% for medium video frame
rates, such as 15 fps used in this paper. In this case the linear
mapping from PSNRr,f=90% to MOSr, the mean opinion
score (MOS) achieved by r% of the transmissions, is

MOSr = 19 + 3.6(PSNRr,f=90% − 19). (1)

IV. APPLICATIONS

The new multiuser perceptual video quality measure
PSNRr,f -MOSr is composed of two parts. PSNRr,f fo-
cuses on the distribution of the video quality across the
video frames and channel uses, while MOSr also provides
guidance on the perceptual quality across different users.
The MOS in MOSr can be calculated from PSNRf=90%

using Eq. (1). The proposal of PSNRr,f -MOSr is motivated
by the AVC/H.264 coded video over IEEE 802.11a WLAN
simulation, but this measure is independent of the simulation
setup and can be exploited in different video communication
systems.

Here we briefly discuss an example of how PSNRr,f -
MOSr can be used. In Fig. 4 we plot the MOSr of three



videos coded by AVC/H.264 (using QP = 26, GOPS = 10,
PS = 100 bytes) and transmitted over an 802.11a WLAN
with a PHY data rate of 6 Mbps at average channel SNRs
of 5 and 7 dB, respectively. In the 7 dB channel (the three
curves on the right) for example, if all users are assumed
to be communicating the same type of videos and an 80%
consistency in user experience is desired, i.e., r=0.8, the
videoconferencing users (silent.cif) experience an MOS over
80 out of 100 which corresponds to an “excellent” video
quality with regard to the scale plotted in Fig. 2; the news
watchers (paris.cif) experience a “good” video quality (a MOS
of 74 out of 100), but the sports fans only receive “bad”
quality videos, corresponding to a MOS of 30 out of 100,
which is 40 to 50 points lower than those of the other two
groups of users. This information can then be utilized for link
adaptation, system performance evaluation, or system design
purposes. For example, depending on the type of videos a
specific communciation system targets, a lower PHY data rate
might need to be used, if one is available, in order to achieve
a good user experience.

Fig. 4. MOSr of three videos coded by AVC/H.264 using QP = 26, GOPS
= 10, PS = 100 bytes and transmitted over 802.11a WLAN with a PHY data
rate of 6 Mbps at average channel SNRs 5 and 7 dB

PSNRr,f -MOSr can be adapted partially. If a sophisti-
cated objective video quality measure is desired despite its
high cost, it can certainly be used to calculate the MOS in
MOSr and let the statistics of the MOS’s be captured by
the percentage of channel realization r that achieves each
MOS value. On the other hand, when a video is to be
transmitted over a reliable network with negligible packet
error, or only video coding (i.e., no video transmission)
is under investigation, the statistics of video quality across
communication channel realizations becomes irrelevant. In
this case, PSNRr,f -MOSr can be collapsed into PSNRf -
MOS, i.e., the MOS of a single compressed video sequence
can be calculated from PSNRf=90% using Eq. (1).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new statistical objective per-
ceptual video quality measure PSNRr,f -MOSr. PSNRr,f

is defined as the PSNR achieved by f% of the frames in
each one of the r% of the transmissions over a network. This
quantity has the potential to capture the performance loss due
to damaged frames in a particular video sequence (f%), as
well as to indicate the probablity of a user experiencing a
specified quality over the channel (r%). The percentage of
transmissions also has the interpretation as what percentage
out of many video users who access the same channel, would
experience a given video quality. We further investigate the
correspondence between PSNRf and perceptual video qual-
ity through a subjective experiment which results in a linear
equation connecting PSNRr,f=90% and MOSr, the mean
opinion score (MOS) achieved by r% of the transmissions. It
is shown from this subjective experiment that PSNRf=90%

correlates much better with the delivered perceptual video
quality than the average PSNR across all frames of a video,
while with no extra computatation.

Future work includes more subjects in the subjective experi-
ment to construct a nonlinear relationship between the opinion
scores MOSr and PSNRr,f .
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