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Abstract—Campbell derived and defined a quantity called the coefficient
rate of a random process that involves the process spectral entropy. In this
correspondence, his interpretation is substantiated with two new deriva-
tions. One derivation tightens the connection to source bandwidth, while
the second derivation implies a specific approach to adaptive coefficient se-
lection in realization-adaptive approaches to compression. After a discus-
sion on the role the coefficient rate plays in adaptive source coding, a quan-
tity called Campbell bandwidth is defined based on its connection to source
bandwidth and is contrasted with Fourier bandwidth and Shannon band-
width. The connection between coefficient rate and reverse water-filling
from rate distortion theory is also demonstrated.
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I. INTRODUCTION

The coefficient rate of a random process was first derived and
defined by Campbell in 1960 [1]. Campbell considered the product
of N sample functions of a random process, and showed, using
an asymptotic equipartition property (AEP)-like argument, that a
Karhunen–Loéve expansion (K-L expansion) of this product could
be separated into two sets—one set with average power very close
to that of the product and the other set having very low average
power. Asymptotically, in the number of sample functions forming the
product and in the support interval of the process, he showed that the
average number of terms in the high-power set approached a quantity
that he interpreted as a coefficient rate given by

Q2 = exp �
1

�1

S(f) logS(f)df (1)

where we denote the quantity in the exponent as the spectral entropy
(we use Q2 for the coefficient rate and reserve Q1 for Shannon’s en-
tropy rate power [2]). The implications of coefficient rate and spectral
entropy for source compression were not explored by Campbell and
no coding theorems were presented. Shortly thereafter, Abramson [3]
examined Campbell’s coefficient rate and noted that an approach to
source compression drawing on Campbell’s result did not exist and
was not immediately evident.

Thirty years later, the spectral entropy began to attract attention
for speech and image compression. Motivated by Campbell’s paper,
Gibson, et al [4] compared Campbell’s coefficient rate and Shannon’s
entropy rate power for autoregressive (AR) processes and for speech
classification, and McClellan and Gibson [5]–[7] used spectral entropy
to develop adaptive speech coders. Around the same time, other
researchers [8]–[10] were investigating spectral entropy and a quantity
similar to coefficient rate for compression applications, but apparently
without knowledge of Campbell’s paper.

In particular, for a two-dimensional discrete cosine transform (DCT)
based coding scheme, Mester and Franke [8] use two factors to clas-
sify data blocks so that different types of data blocks can use different
coding strategies. For two-dimensional transform coefficients C(i; j),
they define an activity measure

A =
i;j

jC(i; j)j

and the spectral entropy

E = �
i;j

a(i; j) log a(i; j)

where a(i; j) = jC(i;j)j
A

, the normalized coefficient magnitude. These
two quantities are used to classify the data block. The activity measure
A reflects the total energy of the data block, which may indicate that the
number of coefficients to be coded is large whenA is high. On the other
hand, the spectral entropyE acts as a measure of the distribution of the
energies, so if energy is concentrated in a single coefficient, the spectral
entropy will be small, which indicates that the number of coefficients
to be coded should be small.

A similar approach is taken by Coifman and Wickerhauser in [9], al-
though the goal of their method is different. For transform coefficients
xn, Coifman and Wickerhauser define the theoretical dimension of sig-
nals as

d = exp �
n

pn log pn
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where pn = jx j

kxk
, and the exponent is the spectral entropy. They use

d as a measure of the number of coefficients to be coded in a wavelet
transform, and by minimizing d, the best wavelet packet basis can
be chosen as the best transform basis since it produces the minimum
number of coefficients. The same method is extended to other transfor-
mations for speech processing in [10].

Perhaps the most significant development in the field of image
compression in recent years has been the discovery of wavelet-based,
tree-structured methods for still-image compression [11], [12]. These
methods have three notable features: 1) They are input, or sample
function adaptive; 2) they are nonlinear approximation methods in that
the best n basis functions are chosen for the current input, rather than
the first n [13]; and 3) they do not require the explicit coding of side
information.

Ortega and Ramchandran [14] call such approaches “input-by-input”
coding and they state, “However, even a narrowly defined ‘class’ of
inputs will likely show significant variations among inputs (. . .), and
thus techniques that allow an ‘input-by-input’ parameter selection are
likely to be superior. . . .” Further, Effros [15] states, “. . .source-depen-
dent components of a compression system are designed to do well on
average across the training set but may not achieve, on any particular
member of that set, performance as good as the performance achiev-
able with a code designed specifically for that data.”

Realization-adaptive compression and nonlinear approximation do
not fit neatly into classical rate distortion theory. An additional chal-
lenge to applying classical rate distortion theory is that many practical
coders operate in the low bit rate or high distortion region, where much
less is known about rate distortion optimal compression [16].

In this correspondence, we return to Campbell’s original work and
substantiate his interpretation of Q2 as a coefficient rate with two new
derivations of this quantity. One derivation tightens the connection
to source bandwidth, while the second derivation implies a specific
approach to adaptive coefficient selection in realization-adaptive
approaches. We present an example demonstrating the role coefficient
rate plays in realization-adaptive methods. Based upon the coefficient
rate connection to source bandwidth, we define a quantity called
Campbell bandwidth and contrast Campbell bandwidth with Fourier
bandwidth and Shannon bandwidth, as defined by Massey [17].
Finally, a connection between coefficient rate and reverse water-filling
is established.

II. CAMPBELL’S MINIMUM COEFFICIENT RATE [1]

The idea behind Campbell’s approach is intuitively quite straightfor-
ward. When a sequence of samples of a random variable is to be coded,
it is generally true that concatenating samples and coding them together
can achieve a lower code rate. When the number of samples concate-
nated gets very large, the code rate can approach its lower bound, the
entropy of the random variable, as close as possible. The same idea is
used by Campbell when a number of sample functions of a random
process are considered.

Consider a zero-mean stationary continuous-time random process
X(t). Using the K-L expansion, in time duration [0; T ], the process
can be decomposed as

X(t) =

1

i=1

Ci�i(t) (2)

where �i(t)’s are normalized eigenfunctions of the expansion andCi’s
are uncorrelated random variables with zero mean and EEE[C2

i ] = �i.
In other words, the random process can be represented by a random
vector fC1; C2; . . .g. Also, the total average energy of the process is
T = i �i.

Let

x1(t1); x2(t2); . . . ; xN(tN); 0 � tj � T; j = 0; 1; . . . ; N

beN independent sample functions of the process, and assuming there
is only a finite number M of components in the K-L expansion, these
sample functions can be expressed as

xj(tj) =

M

i=1

cij�i(tj); j = 1; 2; . . . ; N

where cij , j = 1; 2; . . . ; N are N samples of random variable Ci.
Let

y(t1; t2; . . . ; tN ) = x1(t1)x2(t2) � � � xN (tN)

be the product of these N sample functions, and since these sample
functions are independent, y(t1; t2; . . . ; tN ) can be expressed in terms
of products of the eigenfunctions of the K-L expansion

y(t1; t2; . . . ; tN) =x1(t1)x2(t2) � � � xN (tN)

=

N

j=1

M

i=1

cij�i(tj)

=

M

i ;i ;...;i =1

ci � � � ci �i (t1) � � ��i (tN)

=

M

k=1

c
(k)
�
(k)(t1; t2; . . . ; tN ) (3)

where c(k) is the product of ci and these coefficients are arranged
in decreasing order of their variances, and �(k)(t1; t2; . . . ; tN ) is also
reordered accordingly.

Campbell approximated y(t1; t2; . . . ; tN) by choosing �(<
MN )c(k)’s with largest variances such that the average energy loss of
the approximation is small. Since the c(k)’s are ordered according to
their variances, the approximation is just

y�(t1; t2; . . . ; tN ) =

�

k=1

c
(k)
�
(k)(t1; t2; . . . ; tN ) (4)

and the average energy loss of the approximation satisfies

1

TN
EEE[y(t1; t2; . . . ; tN )� y�(t1; t2; . . . ; tN )]2

=
1

TN

M

k=�+1

E[c(k)]2 < �: (5)

Using an AEP-like argument, Campbell showed that the number �
satisfies the following asymptotic relation:

1

N
log�! H

�

T
= �

M

i=1

�i

T
log

�i

T
(6)

where H �
T

is the spectral entropy of the source in discrete form.
Using a limiting theorem from Toeplitz integral equations [18], as
N ! 1 and T ! 1, (6) becomes

lim
T!1

lim
N!1

log
�1=N

T
= �

1

�1

S(f) logS(f)df (7)

where S(f) is the normalized power spectral density of the random
process and the right-hand side of (7) is the differential entropy of the
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spectrum, or the spectral entropy of the random process, which we de-
note as h(S). Campbell then argued that [�1=N ]=T is the number of
coefficients per dimension per unit time, so he defined the minimum
coefficient rate of a random process as

Q2 = exp �
1

�1

S(f) logS(f)df : (8)

A simple example of Campbell’s result is when the power spectral den-
sity of a source is rectangular for jf j �W , thenQ2 is just the Nyquist
sampling rate, i.e., Q2 = 2W . Furthermore, if S(f) is triangular, the
coefficient rate is Q2 =

p
eW = 1:648W . This shows that the coef-

ficient rate is somehow related to the signal bandwidth. Using a more
direct AEP approach in Section III, we get a similar result that directly
relates Q2 with signal bandwidth.

It is also important to point out the relationship of coefficient rate and
classical rate distortion theory results. For continuous time, band-lim-
ited sources, classical rate distortion theory assumes Nyquist sampling
and then proceeds to specify the minimum number of bits per sample
(or bits per coefficient here) required to represent the source with the
desired fidelity. On the other hand, the coefficient rate is not a source
coding result at all. It is a statement about the minimum number of
coefficients per second or samples per second required to represent a
random process in the sense of the number of terms needed to approxi-
mate the energy in the product of sample functions, as described in this
section. There is a tradeoff between sampling rate and coding accuracy
when encoding continuous-time sources, and Abramson [3] comments
on this tradeoff in his paper. Interestingly, coefficient rate as specified
by Campbell gives us an analytical indicator of the required minimum
rate that was previously unavailable.

III. THE EQUIVALENT BANDWIDTH EXPLANATION

Consider the same stationary random process X(t) with a normal-
ized spectrum S(f). Since S(f) is normalized, it can be treated as a
probability density function and probability can be defined as

P (F ) =
F

S(f)df (9)

where F is a set defined along the frequency axis, and P (F ) is the
power of the process in the frequency band defined by F . According to
the AEP for continuous random variables [19], the volume of a N -di-
mensional set F (N) 2 RRRN is defined as

Vol(F (N)) =
F

df1df2 . . . dfN : (10)

Given the physical meaning of S(f), the volume of set F (N) has a
meaning related to signal bandwidth. For example, in one dimension,
if F is a continuous set, Vol(F ) is just the bandwidth of the signal;
if F consists of several separate subsets along the frequency axis,
then Vol(F ) is the sum of the bandwidths of these subsets. Now let
the support of S(f) be the edges of F (N) in all dimensions, then
Vol(F (N)) = 1.

The typical set F (N)
� is then defined such that

P F (N)
� > 1� � (11)

that is, F (N)
� contains most of the power in set F (N). Using the AEP,

the volume of the typical set F (N)
� that contains most of the power

satisfies

(1� �)eN(h(S)��) � Vol F (N)
� � eN(h(S)+�) (12)

where h(S) is the spectral entropy as defined in (7). As N ! 1,
(1� �) ! 1, so on a per-dimension basis, the equivalent bandwidth

of the random process, We = (1=2) Vol F
(N)
�

1=N

, satisfies

eh(S)�� � 2We � eh(S)+�: (13)

If we call 2We the equivalent rate of the random process, i.e., Re =
2We, then the equivalent rate of a random process is within a small
range around eh(S) , which is the coefficient rate derived by Campbell.

IV. DOMINANT TERMS IN CAMPBELL’S APPROXIMATION

We now explore Campbell’s result further to estimate asymptotically
the variance of the surviving terms after truncation in (4) as N ! 1
and to calculate the number of these terms. Since all of the sample
functions are independent, for any random variable

C(k) = Ci Ci � � �Ci

in which eachCi is one of the random variables in the K-L expansion,

E[(C(k))2] = E C2
i E C2

i � � �E C2
i = �i �i � � ��i :

So the total average energy of the product

E y(t1; t2; . . . ; tN)2 =

M

k=1

E (C(k))2

=

M

i ;i ;...;i =1

�i �i � � ��i

=

N

j=1

M

i=1

�i = TN : (14)

There are a total of MN terms in E y(t1; t2; . . . ; tN )2 , but some
of them are very small compared to others. As N ! 1, the large en-
ergy terms will dominate the sum and small energy terms can be thrown
away without significantly affecting the total energy. On the other hand,
each of these MN terms is a product of N energy terms chosen from
theM K-L expansion components. Since M < N , the product can be
rewritten as �n1 �n2 � � � �nM and we can see that there is some repeti-
tion among those MN terms; therefore, (14) can be rewritten as

E y(t1; t2; . . . ; tN )2 =

N

j=1

M

i=1

�i

=

M

i=1

�i

N

=

n : n =N

N !

n1! � � �nM !
�n1 � � ��nM :

(15)

The coefficient before the energy term is the count of repeti-
tions of that energy term. We want to find the largest term of

N!
n !n !���n !

�n1 �n2 � � ��nM subject to the constraint that

M

i=1

ni = N:

As N ! 1, this term grows much faster than any other term, and
it dominates the total energy of y(t1; t2; . . . ; tN ). So the problem be-
comes finding the maximum of the functional

I = log
N !

n1!n2! � � �nM !
�n1 �n2 � � � �nM + �

M

i=1

ni: (16)
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Using the approximation logN ! = N logN �N for large N [20], we
have

I = logN !�
i

logni! +
i

ni log �i + �
i

ni

=N logN �

i

ni logni +
i

ni log �i + �
i

ni: (17)

Taking partial derivatives of I with respect to ni and setting them to
zero, we have

@I

@ni
= � logni � 1 + log �i + � = 0

so, ni = e��1�i. By using the constraint
i
ni = N , we obtain

� � 1 = log(N=T ). So1

ni =
�i
T
N; i = 1; 2; . . . ;M: (18)

That is, the number of �i in �n1 �n2 � � ��
n

M is proportional to �i. Let
pi = �i=T , since

i
�i = T ,

i
pi = 1, and we have ni = piN .

We can find the value of these energy terms and the number of them.
We have

�2
��n1 �n2 � � � �

n

M = exp
i

ni log �i

=TNe�NH(S) (19)

and the number of such terms is

� �
N !

n1!n2! � � �nM !

= exp �N
i

ni
N

log
ni
N

= exp �N
i

�i
T

log
�i
T

=eNH(S) (20)

where H(S) = �
i
(�i=T ) log(�i=T ), the spectral entropy in

discrete form. This agrees with Campbell’s result. We also have the
asymptotic relation TN = ��2, so we can see that when N !1, we
can use these � equal energy terms to approximate y(t1; t2; . . . ; tN ),
and the energy loss introduced by truncation is negligible.

V. ADAPTIVE SOURCE COMPRESSION

We have presented two alternative derivations of Campbell’s coeffi-
cient rate results, and each provides insight into the physical situation
of interest. To elaborate on these ideas, it is useful to recall the approach
used in two-dimensional discrete cosine transform coding of images.
The basic approach in classical transform coding is to take samples of
an image, apply a two-dimensional discrete transform to a particular
image block, assign the number of bits to be used to encode each coef-
ficient, and then quantize and code each coefficient using the allocated
number of bits [13], [21]. Coefficients allocated zero bits are not coded
at all. According to rate distortion theory, when the distortion is mea-
sured using mean-square error (MSE), an optimal bit-allocation rule
should be based on the so-called reverse “water-filling” result, wherein
bits are assigned to a coefficient in direct proportion to the coefficient
variance—a higher variance receives a greater share of the bits to be
allocated. If the bit allocations are determined once and then held fixed

1We have only demonstrated a stationary point here. The divergence in-
equality can be used to show (18) yields a maximum.

for all encodings, the decoder can be sent this information once, and
the rate required for this information is asymptotically negligible.

The bits allocated to each coefficient for a block is called the side
information, and a binary indicator showing which coefficients are en-
coded and which are not transmitted at all is called the significance
map. Most transform (or wavelet-based) coders used today adaptively
allocate bits on a block-to-block basis so the side information and sig-
nificance map are continuously changing. Thus, this information needs
to be provided to the receiver relatively often (or surmised from the
data structure).

The equivalent bandwidth result in (13) gives a connection between
coefficient rate and the signal bandwidth, but this does not necessarily
imply that the coefficient rate is the number of samples one should
use for the random process. Instead, the sampling rate may still be the
Nyquist rate, but the importance of the different samples may be dif-
ferent; thus, the significance map should be adjusted according to the
importance of the samples.

The results on dominant terms have a more direct connection to
coder design, and, in fact, imply a novel coder structure. First, observe
that the results in Section IV have exactly the kind of interpretation
that is expected from an AEP approach. Namely, the number of terms
in the high-power set is related to the entropy of the (spectral) density
as given by (20), and each coefficient in the high-power set is about
the same and can be found from (19). The new implication for coding
comes from (18). Equation (18) says that in a sequence ofN samples of
a particular coefficient, the number of coefficient samples that should
be coded is proportional to the variance of the coefficient!

VI. REALIZATION-ADAPTIVE COEFFICIENT SELECTION

The basic approach to source compression implied by the spectral
entropy results is illustrated in Fig. 1. In Fig. 1(a), we show M trans-
form coefficients or coefficients of basis functions for N frames of
source data, denoted cij , i = 1; . . . ;M , j = 1; . . . ; N . The coeffi-
cients in the first frame or block are ci1, i = 1; 2; . . . ;M , while the
coefficients for the second block are ci2, i = 1; . . . ;M , and so on.
Therefore, the block index is indicated by the second subscript (j) and
the coefficient index is indicated by the first subscript (i). In classical
transform-based coding, coefficient bit allocation is accomplished on a
frame-by-frame or block-by-block basis as illustrated in Fig. 1(b). That
is, given a particular frame or block (fixed j), a fixed number of bits is
allocated across theM coefficients according to their relative energies.
The spectral entropy approach implies that each transform coefficient
should be considered as a separate sequence, cij , j = 1; . . . ; N , as
shown in Fig. 1(c), and the significant values of that coefficient in the
sequence should be determined by comparing to a threshold derived
from the coefficient energy.

To select which coefficients are to be coded, the coefficient rate
theory implies a method that selects coefficients according to the en-
ergy level of coefficients, that is, the higher the energy of a coefficient,
the more likely it is to be coded. However, such a scheme is not op-
timal in the rate-distortion sense. This is not hard to understand: in the
optimal coding scheme, the distortion level for each coded coefficient
is the same for all the coefficients, which is what optimal bit alloca-
tion tries to achieve. If we select coefficients based on their energy
by encoding more high-energy coefficients, assuming we still keep the
same distortion level for all the coded coefficients, since we are coding
fewer of those low-energy coefficients, we are actually increasing the
distortion level of the low-energy coefficients if we take into account
those discarded samples. Therefore, such a scheme is not rate-distortion
optimal.
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Fig. 1. Encoding transform coefficients. (a) Coefficients of N sample functions. (b) Encoding sample function by sample function. (c) Encoding component by
component.

VII. FOURIER BANDWIDTH, SHANNON BANDWIDTH AND

CAMPBELL BANDWIDTH

The equivalent bandwidth derivation implies a connection between
the coefficient rate and bandwidth. We define the Campbell bandwidth
as Wc = Q2=2. In this section, we compare the Campbell bandwidth
with two other bandwidth-related quantities: the Fourier bandwidthW ,
which is the most commonly used bandwidth in communication and
reflects the actual frequency range of a signal; and the Shannon band-
width, which is defined as follows: for a random process X(t) with
K-L expansion

X(t) =

1

i=1

Ci�i(t)

if a sample function x(t) over the time interval 0 � t � T can be
represented or very well approximated by

x(t) =

M

i=1

ci�i(t)

then the Shannon bandwidth of the sample function x(t) is Ws =
M=2T .

For a process with rectangular spectrum, the three quantities are the
same, i.e., Wc = Ws = W . The following theorem gives the general
relationship of the three bandwidths.

Theorem 1: For each sample function of a random process, its
Campbell bandwidth, Shannon bandwidth, and Fourier bandwidth,
which are denoted by Wc, Ws, and W , respectively, satisfy following
relation:

Wc �Ws �W:

The equality holds if and only if the sample function has a rectangular
spectrum over the band �W � f � W .

Proof:
Part 1: Shannon gives a conceptually simple proof of Ws � W

[22], and there are many other proofs.

Part 2: Following Campbell’s development in Section II, we have
� � M , the coefficient rate Q2 would be

Q2 = lim
T!1

lim
N!1

�1=N

T
�

M

T
: (21)

So we have

Wc =
Q2

2
�

1

2

M

T
= WS : (22)

Equality holds if and only if all the coefficients ci are equal so we have
to keep all coefficients in the K-L expansion of X(t).

Combining Part 1 and Part 2, we prove that

Wc �Ws �W: (23)

VIII. WATER-FILLING

In the rate-distortion sense, the number of coefficients in the
expansion that are coded can vary depending on the distortion
level. According to the reverse water-filling theory, for a Gaussian
process X(t) with transform coefficients fCi; i = 1; 2; . . .g, the
number of coefficients retained is given by the number of coeffi-
cients with energy greater than a constant distortion level �, i.e.,
(1=2T ) i X E C2

i > � , where X (x) = 1 for x > 0, and
otherwise is zero. The Campbell bandwidth, however, does not have
an obvious physical meaning at a certain distortion level; but if the
distortion level � varies, the interpretation of Campbell bandwidth is
clearer.

For the same Gaussian processX(t), let �i = E C2

i ; if we encode
the transform coefficients fCi; i = 1; 2; . . .g at different distortion
levels �j , j = 1; 2; . . . ; n, then at each distortion level, the number
of coded coefficients is given by (1=2T ) i X (�i > �j), and �j has
a range of [0; �max], where �max = max(�i). For n very large so that
�j can be treated as uniformly distributed in [0; �max], the probability
that Ci is selected is proportional to the magnitude of �i, so we have a
probability function pi = �i= i �i.
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Following the same argument in Section IV, T =
i
�i, we have

the spectral entropy

H(S) = �
i

�i
T

log
�i
T
:

Then the Campbell bandwidth is Wc = (1=2)eH(S), and we can say
the Campbell bandwidth is the minimum average bandwidth for en-
coding the process across all possible distortion levels.

IX. CONCLUSION

We have presented two new derivations of the coefficient rate in-
troduced by Campbell. One derivation solidifies its interpretation as
a coefficient rate, and shows that the spectral entropy of a random
process is proportional to the logarithm of the equivalent bandwidth
of the smallest frequency band that contains most of the energy. The
second derivation implies that the number of samples of a particular
component should be proportional to the variance of that component.
We discussed the implications of the latter result for realization-adap-
tive source coding and provided a connection with the familiar reverse
water-filling result from rate distortion theory. From the coefficient
rate, we defined a quantity called the Campbell bandwidth of a random
process, and we contrasted Fourier bandwidth, Shannon bandwidth,
and Campbell bandwidth.
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Regular and Irregular Progressive Edge-Growth
Tanner Graphs

Xiao-Yu Hu, Member, IEEE, Evangelos Eleftheriou, Fellow, IEEE,
and Dieter M. Arnold, Member, IEEE

Abstract—We propose a general method for constructing Tanner
graphs having a large girth by establishing edges or connections between
symbol and check nodes in an edge-by-edge manner, called progres-
sive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG
Tanner graphs and on the minimum distance of the resulting low-density
parity-check (LDPC) codes are derived in terms of parameters of the
graphs. Simple variations of the PEG algorithm can also be applied to
generate linear-time encodeable LDPC codes. Regular and irregular
LDPC codes using PEG Tanner graphs and allowing symbol nodes to
take values over GF( ) ( 2) are investigated. Simulation results
show that the PEG algorithm is a powerful algorithm to generate good
short-block-length LDPC codes.

Index Terms—Girth, low-density parity-check (LDPC) codes, LDPC
codes over GF( ), progressive edge growth (PEG), PEG Tanner graphs.

I. INTRODUCTION

Codes on graphs [1]–[13] have attracted considerable attention
owing to their capacity-approaching performance and low-complexity
iterative decoding. The prime examples of such codes are the low-den-
sity parity-check (LDPC) codes. It is known that the belief-propagation
(BP) or sum–product algorithm (SPA) over cycle-free Tanner graphs
[1] provides optimum decoding. Hence, it is natural to try to minimize
the influence of the cycles in the iterative decoding process. This
approach has been adopted for both LDPC [14] and turbo codes [15]
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