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Abstract— We revisit the classic problem of developing a spatial
correlation model for natural images and video by proposing a
conditional correlation model for relatively nearby pixels that is
dependent upon four parameters. The conditioning is on local
texture and the conditional correlation model is presented for
each of the nine 4 by 4 intra-modes used in the AVC/H.264 video
coding standard. We use this conditional correlation model to
calculate the conditional rate distortion function when universal
side information is available at both the encoder and the decoder.
We demonstrate that this side information, when available, can
save as much as 2 bits per pixel for selected videos at low
distortions.

I. INTRODUCTION

Parsimonious statistical models of natural images and
videos can be used to calculate the rate distortion functions of
these sources as well as to optimize particular image and video
compression methods. We propose a conditional correlation
model for two close pixels in one frame of digitized natural
video sequences, with the conditioning being on the texture of
the blocks where the two pixels are located. To study the new
correlation model concretely we pick the blocksize as 4×4 and
categorize the local texture using the 9 intra-frame prediction
modes, which were introduced in the AVC/H.264 video coding
standard [1]. The performance of the new correlation model
is demonstrated through comparison with the approximated
correlation coefficients of real video sequences (Section III).

We further study the marginal rate-distortion function of
the different local textures, i.e., different intra-modes. These
marginal rate-distortion functions are shown to be very distinct
from each other. Classical results in information theory are
then utilized to derive the conditional rate-distortion function
when the universal side information of local textures is avail-
able at both the encoder and the decoder. We demonstrate that
by involving this “free” side information, the lowest rate that is
theoretically achievable in video compression can be as much
as 2 bits per pixel lower than that without the side information
(Section IV). We conclude this paper and provide insights into
future research in Section V.

II. STATISTICAL MODELS PROPOSED IN THE PAST

A. In the spatial domain for images
The research on statistically modeling the pixel values

within one image goes back to the 1970s when two correlation
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functions were studied. Both assume a Gaussian distribution
of zero mean and a constant variance for the pixel values. The
first one is

ρs(∆i, ∆j) = e(−α|∆i|−β|∆j|), (II.1)

with ∆i and ∆j denoting offsets in horizontal and vertical
coordinates. The parameters α and β control the magnitude
of correlation in the horizontal and vertical directions, respec-
tively, and their values can be chosen for different images [2].
The separability in spatial coordinates in this correlation model
facilitates the analysis of the two-dimensional rate-distortion
behavior of images using the one-dimensional Kahrunen-
Loeve transform (KLT).

The second correlation model studied previously is an
isotropic function

ρs(∆i, ∆j) = e−α
√

∆i2+∆j2
. (II.2)

This model implies that the correlation between two pixels
within an image depends only on the Euclidean distance
between them [3]. The major advantage of this model is that
it has a closed-form two-dimensional Fourier transform and
therefore leads to a closed-form rate function and distortion
function on a common parameter. The subscript s in both (II.1)
and (II.2) emphasizes that these two correlation functions are
in the spatial domain.

These two correlation models for natural images are simple
yet effective in providing insights into image coding and
analysis. However image and video coding schemes are ever
advancing and the difference between the performance of
various schemes is much more subtle than several decades
ago.

Figure 1 plots the approximated correlation coefficients
ρ̂s(∆i, ∆j) of two digitized natural images, both of which are
from two digitized natural video sequences, paris.cif and foot-
ball.cif, respectively. For a digitized image let X(i, j) denote
its pixel value at the ith row and the jth column, and M and N
denote the numbers of rows and columns, respectively, in the
image. The approximated correlation coefficient ρ̂s(∆i, ∆j)
of this image can be expressed as

ρ̂s(∆i, ∆j) =
1

(M − ∆i)(N − ∆j)

∑

[X(i, j)X(i + ∆i, j + ∆j)]
√

∑

[X2(i, j)]
∑

[X2(i + ∆i, j + ∆j)]
,

(II.3)

for 0 ≤ ∆i ≤ M − 1, 0 ≤ ∆j ≤ N − 1. The summations
in (II.3) are taken over all pixels whose coordinates satisfy
0 ≤ i ≤ M − 1 − ∆i, 0 ≤ j ≤ N − 1 − ∆j. Calculated
this way, ρ̂s(∆i, ∆j) is expected to approximate ρs(∆i, ∆j).



However in Fig. 1 we can see that when ∆i and ∆j are
larger than 50, which is much smaller than the image size we
encounter in present applications, for example 352×288 in this
figure, the approximated correlation coefficients ρ̂s(∆i, ∆j)
are rather arbitrary and neither of the two correlation functions
can model this behavior. Correspondingly the rate-distortion
analysis of natural images based on these two correlation
functions is far from being accurate.

(a) paris.cif

(b) football.cif

Fig. 1. The approximated correlation coefficient ρ̂s(∆i, ∆j) of two digitized
natural images

B. In the transformed domain for videos
Researchers working on video compression also have devel-

oped statistical models of images in the transformed domain.
The most popular among them treats the discrete cosine
transform (DCT) coefficients in the predicted frames of a video
sequence as uncorrelated Laplacian random variables [4]. If
we use the absolute magnitude distortion measure d(x, x̂) =
|x − x̂|, then there is a closed form rate distortion function
which can be expanded into Taylor series and approximated
by R(D) ∼= aQ−1 + bQ−2. In this formula, the distortion is
measured by the average quantization scale used in the frame.

This quadratic rate distortion function lays the foundation
for the rate control schemes [5]–[7] that are adopted by the
international video coding standards, such as ISO MPEG-4 and
ITU-T H.263. In these rate control schemes, the quantization
stepsizes, which are indexed by the quantization parameters

(QPs), are chosen optimally based on the quadratic rate
distortion function, number of bits left to consume and the
approximate coding complexity. The bits spent coding the
other syntax elements, considered to be mainly the motion
vectors, are monitored and predicted through simple linear or
nonlinear functions.

The Laplacian model for DCT coefficients becomes less ap-
propriate since emerging video compression schemes such as
AVC/H.264 which offer significantly higher coding efficiency
and better resilience to packet losses include a number of new
schemes, such as 9 intra-frame prediction modes and different
block sizes. Furthermore, the motion estimation and compen-
sation scheme has evolved from full-pixel prediction based on
only one previous frame, to quarter-pixel prediction with 6-tap
FIR filter, based on multiple frames in both directions, with
flexible weights among these prediction frames [1].

These new schemes and refinements stretch the Laplacian
model of the DCT coefficients for two reasons. Firstly with
all the options offered in the codecs and the very small
processed block sizes, the majority of the bandwidth is very
likely to be allocated to transmit the coding parameters and
the motion vectors of each block, especially in the low to
medium bit rate applications. Since the Laplacian model only
treats the DCT coefficients, it becomes insufficient to represent
the information in the video source. Secondly and more
importantly, these coding options and parameters are to be
chosen, in an optimal way if possible, before the DCT or
DCT-like transforms can be applied to the residue block. This
is considered as a rate distortion optimization problem and
the most popular solution to this problem has been to conduct
optimization with a fixed QP. However, from the perspective of
the rate control, the QP is to be optimally chosen based on the
residue data after the rate distortion optimization is performed.
Therefore there is a “chicken and egg” dilemma artificially
caused by modeling the statistics in the transformed domain. A
couple of recently proposed schemes following the same trend
[8], [9] try to tackle this dilemma by either engaging a “two
pass scheme” or defining a “basic unit”. This is an ongoing
research area and for more recent activities please refer to
[10]. However a new and promising direction of solving this
problem is to set up a statistical model of the video source
in the spatial-temporal domain and the rate control and rate
distortion optimization become a unified problem. This is the
direction taken in our research and in this paper we focus
on the correlation model and corresponding rate-distortion
analysis in the spatial domain of video.

III. DEFINITION OF BLOCK-BASED CONDITIONAL
CORRELATION MODEL

In this section we propose a new correlation model in the
spatial domain of a digitized natural image or an image frame
in a digitized natural video. We assume that all pixel values
within one natural image form a 2-D Gaussian random vector
with memory, and each pixel value is of zero mean and the
same variance σ2.

From the discussion in Section II-A, we know that to study
the correlation between two pixel values within one natural
image, these two pixels should be located close to each other
compared to the size of the image. Also for a sophisticated
correlation model, the correlation between two pixel values



should not only depend on the spatial offsets between these
two pixels but also on the other pixels surrounding them.

Intra-frame prediction is a new feature in AVC/H.264 which
removes to a certain extent, the spatial redundancy in neigh-
boring 4×4 blocks or 16×16 macroblocks (MBs). If a block
or MB is encoded in intra mode, a prediction block is formed
based on previously encoded and reconstructed surrounding
pixels. The prediction block P is subtracted from the current
block prior to encoding. For the luminance samples, P may
be formed for each 4 × 4 sub-block or for a 16 × 16 MB.
There are a total of 9 optional prediction modes for each 4×4
luminance block as shown in Fig. 2 and 4 optional prediction
modes (mode 0 to 3 in Fig. 2) for a 16× 16 luminance MB.

Fig. 2. The intra prediction modes for 4 × 4 blocks in AVC/H.264

Apart from its advantage in saving source bits, the intra-
frame prediction reveals which one out of the 9 different local
textures that are identified by their orientations (intra-modes)
is the most similar to the texture of the current 4× 4 block or
16× 16 MB. It is reasonable to conjecture that the difference
in local texture also affects the correlation between two close
pixels. Let us look at Fig. 3 and focus on the loose surface
(the mesh surface with less data points) in each subplot for the
time being. In this figure we plot the approximate correlation
coefficients of two pixel values ρ̂s(∆i, ∆j) in the image
paris.cif according to the formula (II.3), averaged among the
blocks that have the same intra-mode. We choose ∆i and ∆j to
be very small to concentrate on the dependence of the statistics
on local texture in an image.

Figure 3 shows that the average approximate correlation
coefficients ρ̂s(∆i, ∆j) is very different among the blocks
with different intra-modes. And for the blocks with one certain
intra-mode, ρ̂s(∆i, ∆j) demonstrates a certain shape which
agrees with the direction of the local texture. For example the
intra-mode 0 in Fig. 2 has a vertical texture, correspondingly
in Fig. 3 for the intra-mode 0, the approximate correlation
coefficients are close to 1 for the same value of ∆j, i.e., the
pixels on the same column have similar values. If we average
ρ̂s(∆i, ∆j) across all the blocks in the image, we will get
what is shown in Fig. 1, but the important information about
the local texture will be lost.

In the following we propose a new block-based correlation
coefficient model which takes into account its dependence on
the local texture. It is very important to point out that it is not
necessary to use the intra-modes to identify the local texture,
and there could be more than 9 categories for the local texture.

We choose the intra-mode scheme that is adopted in the coding
standard AVC/H.264 for its broad recognition.

Definition 3.1: The correlation coefficient of two pixel val-
ues with spatial offsets ∆i and ∆j is defined as

ρs(∆i, ∆j|Y1 = y1, Y2 = y2)

= 1
2 (ρ∗(∆i, ∆j|y1) + ρ∗(∆i, ∆j|y2)),

(III.4)

where

ρ∗(∆i, ∆j|y) = a(y) + (1 − a(y))e−|α(y)∆i+β(y)∆j|γ(y)

.
(III.5)

Y1 and Y2 are the intra-modes of the 4×4 blocks the two pixels
are located in, respectively, and therefore they are integers
between 0 and 8. The parameters a, α, β and γ are functions
of the intra-mode Y .

It can be shown easily that this definition satisfies the
restrictions for a function to be a correlation function:

• ρs(∆i, ∆j|Y1 = y1, Y2 = y2) ∈ [−1, 1] and ρs(0, 0|Y1 =
y1, Y2 = y2) = 1;

• ρs(∆i, ∆j|Y1 = y1, Y2 = y2) = ρs(−∆i,−∆j|Y1 =
y1, Y2 = y2).

This correlation function discriminates all the 9 intra modes.
Therefore the correlation between two pixel values in one
image is dependent on the local texture where the two pixels
are located. As the spatial offsets between the two pixels ∆i
and ∆j increase, ρs(∆i, ∆j|Y1 = y1, Y2 = y2) decreases at a
different speed depending on the four parameters a, α, β and
γ.

The change of the four parameters a, α, β and γ from one
block to another in the same frame, from one frame to another
in the same scene and from one scene to another is currently
under investigation. In this paper we choose the combination
of the four parameters that jointly minimizes the mean absolute
error (MAE) between the correlation coefficients approximated
for a whole video frame and those calculated through the new
model. These parameters for one frame in paris.cif and their
corresponding MAE are presented in Table I. We can see from
this table that the parameters associated with the new model
are very distinct for different intra-modes while the MAE is
always kept very small. In Fig. 3 we plot ρ∗(∆i, ∆j|y) of
all the intra-modes for the same image paris.cif using these
optimal parameters. We can see that the new spatial correlation
model does capture the dependence of the correlation between
two pixels on the local texture and fits the approximate
correlation coefficients very well.

TABLE I
THE OPTIMAL PARAMETERS FOR ONE FRAME IN PARIS.CIF AND THEIR

CORRESPONDING MEAN ABSOLUTE ERRORS (MAES)

a γ α β MAE
Mode0 0.3 0.5 0.0 1.2 0.027
Mode1 0.5 0.5 1.2 0.0 0.055
Mode2 0.7 0.2 0.0 -1.2 0.044
Mode3 0.7 0.5 -1.9 -1.0 0.057
Mode4 0.7 0.5 -1.0 1.9 0.047
Mode5 0.6 0.4 0.6 -1.8 0.037
Mode6 0.6 0.4 -1.9 0.6 0.033
Mode7 0.6 0.4 0.7 1.8 0.037
Mode8 0.7 0.6 -1.7 -0.4 0.057



Fig. 3. The loose surfaces (the mesh surfaces with less data points) are
the approximate correlation coefficients of two pixel values in the image
paris.cif, averaged among the blocks that have the same intra-mode. The
dense surfaces are the correlation coefficients calculated using the proposed
conditional correlation model, along with the optimal set of parameters

IV. RATE-DISTORTION FUNCTIONS AND CURVES FOR ONE
BLOCK AND ITS SURROUNDING PIXELS

In this section, we study the rate distortion curves and
bounds for one 4 × 4 block and its surrounding pixels using
the new correlation model in the spatial domain. The basic
set up can be summarized in the block diagram in Fig. 4. X
denotes the 4×4 block currently being processed. To simplify
the derivation, X is considered as a vector source of length
16 instead of a two dimensional source of size 4 by 4. As
discussed in Section III, the surrounding 13 pixels (9 on the
top and 4 on the left, denoted by S of length 13) are used to
form a prediction block for each one of the 9 intra modes, as

Z = X − P
(A)
d S, (IV.6)

where P
(a)
d is a 16 by 13 matrix, different for each intra mode.

A is the intra mode chosen for the current block which yields
the smallest prediction error. Z and A are further coded and
transmitted to the decoder, where inverse intra-prediction is
performed, as

X̂ = Ẑ + P
(Â)
d Ŝ. (IV.7)

Y in Fig. 4 denotes the information of intra modes formulated
from a collection of natural images and is considered as
universal side information available to both the encoder and
the decoder.

Intra
prediction

Intermediate
processing

Inverse intra
prediction

X

Y Y

X̂

S Ŝ
Z, A Ẑ, Â

Fig. 4. Coding of one 4 × 4 block X based on the surrounding pixels S

To study the minimum rate that can be achieved theoreti-
cally in video compression, we consider only the case where S
and X are jointly coded with the average distortion constraint:
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=
1

|S| + |X|

{

E[||S − Ŝ||2] + E[||X − X̂||2]
}

≤ D.

(IV.8)

We study this case in two conditions: with or without
the universal side information Y . Jointly coding S and X
without the universal side information Y is the case normally
studied in information theory. Therefore, we emphasize the
latter condition where the universal side information Y is taken
into account.

A. Not taking into account side information Y

This forms a straightforward rate-distortion problem of a
source with memory which has been studied extensively. It
can be expressed as

RwithoutY (D) = min
p(x̂,ŝ|x,s):(IV.8)

1

|S| + |X|
I(X,S; X̂, Ŝ). (IV.9)

The correlation matrix is

K = E

[(

X
S

)

( XT ST )

]

=

8
∑

y=0

σ
2
ρs

((

X
S

)

|Y = y

)

P [Y = y],

(IV.10)

where the conditional correlation coefficients are exactly what
the new model defines. The correlation matrix calculated using
the above equation should be similar to those calculated from
the old spatial correlation models (II.1) and (II.2).

The first order statistics of the universal side information Y ,
P [Y = y], denotes the frequency of occurrence of each intra-
mode, i.e., each texture in the natural images and videos. This
information can be considered as available both at the encoder
and decoder. In this section we plot all the rate-distortion
functions and bounds for one luminance frame from each of
the two video sequences paris.cif and football.cif as examples.
Each pixel is coded using 8 bits. The variance of all the pixels
in each image is calculated and employed. The new conditional
correlation coefficient model (III.5) is used with the parameters
shown in Table I. P [Y = y] is calculated as the average over
frames from ten natural video sequences commonly used as
examples in video coding studies.

B. Taking into account side information Y

This forms a conditional rate-distortion problem of a source
with memory:

RwithY (D) = min
p(x̂,ŝ|x,s,y):(IV.8)

1
|S|+|X|

I(X, S; X̂, Ŝ|Y )

= min
Dy :

∑

y DyP [Y =y]≤D

∑

y RX,S|Y =y(Dy)P [Y = y]. (IV.11)

Because the proposed correlation model discriminates all the
intra-prediction modes, we can calculate the marginal rate-
distortion functions for all the intra-modes, RX,S|Y =y(Dy),
as plotted in Fig. 5 for one frame in paris.cif. These plots
show that the rate-distortion behavior for the blocks with
different local texture, therefore different intra-modes, are very
different. Without the conditional correlation coefficient model
proposed in this paper, this difference cannot be calculated
explicitly. The relative order of the 9 intra modes in terms
of the average rate per pixel depends on the texture and the
parameters associated with the correlation coefficient model



for each intra-mode. For example, mode 2, which is DC
prediction, consumes very little rate compared to other intra-
modes.

Fig. 5. Marginal rate-distortion functions of all the intra-modes,
RX,S|Y =y(Dy), for one frame in paris.cif

Utilizing the classical results for conditional rate distortion
functions [11, Theorem 5], it can be proved that the minimum
in the above equation (IV.11) is achieved at D′

ys where the
slopes ∂RX,S|Y =y(Dy)

∂Dy
are equal for all y and

∑

y DyP [Y =

y] = D. In Fig. 6 we plot this minimum RwithoutY (D) as well
as RwithY (D) as solid lines and dashed lines, respectively.
Comparing these two curves for both paris.cif and football.cif
shows that engaging the first-order statistics of the universal
side information Y saves as much as 2 bits per pixel at low
distortion levels, which corresponds to about a reduction of
200 Kbits per frame for the CIF videos and 3 Mbps if the
videos are played at a medium 15 frames per second. This
difference fades quickly for football.cif but remains about
quarter a bit per pixel for paris.cif at relatively higher dis-
tortion levels, about 350 Kbps in bit rate difference. The rate-
distortion curves of paris.cif are generally higher than those
of football.cif due to the higher pixel variance in paris.cif.

V. CONCLUSIONS

We propose a conditional correlation model for two close
pixels in one frame of digitized natural video sequences, with
the condition being the texture of the blocks where the two
pixels are located. The blocksize is chosen as 4 × 4 and the
local texture is categorized by the 9 AVC/H.264 intra-frame
prediction modes in this paper. We further study the marginal
rate-distortion function of the different local textures, i.e.,
different intra-modes. These marginal rate-distortion functions
are shown to be very distinct from each other. Classical results
in information theory are utilized to derive the conditional
rate-distortion function when the universal side information
of local textures is available at both the encoder and the
decoder. We demonstrate that by involving this “free” side
information the lowest rate that is theoretically achievable in
video compression can be as much as 2 bits per pixel lower
than that without the side information. Future work includes
the rate-distortion analysis of intra-frame prediction in the

(a) paris.cif

(b) football.cif

Fig. 6. Rate-distortion functions of the two conditions

spatial domain and setting up a correlation coefficient model
for two pixels that are not located in one frame.
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