Wide Open Spaces
or
Mostly Wireless, Most of the Time

Jerry D. Gibson
University of California, Santa Barbara

Supported by NSF under Grant Nos. CCF-0429884 and CNS-0435527, the California Micro Program, Applied Signal Technology, Dolby Labs, and Qualcomm, and the UC Discovery Grant Program and Nokia, Inc.
Mostly Wireless—Most Links in the Connection Will Be Wireless

• WLANs
• WLAN Cells
• WLAN/WiMax
• Wireless Mesh Networks
• Mobile Ad Hoc Networks
Most of the Time—The Time Spent in the Wireless Links Will be Greater than in the Wireline Connection

• One way coast to coast propagation delay of 15 msec
• Total one way delay budget of 250 msec
Applications of Interest—More than Just Data or Streaming Media

- Conversational voice communications
 - Two-Way
 - Latency Sensitive
- Two-Way Conversational video communications—Video Telephony
- Laptop or Handheld Handsets
Issues for Voice Communications

• Voice Codec
 – Bit Rate
 – Quality
 – Complexity

• Latency

• Packet Loss Concealment

• Tandem Connections of Codecs
Issues for Two-Way Video Communications

• Video Codec
 – Bit Rate
 – Quality
 – Encoder Complexity

• Latency

• Packet Loss Concealment

• Transcoding
Why Voice/Video Over IP-Based WLANs/WiMax/Ad Hoc/Mesh Networks?

- Voice is the preferred mode of human communication
- Video Standards are now in place
- World-wide Access
- Already Integrated with IP Backbone
- Currently Inexpensive
- Room to Innovate!
Why Not Just Digital Cellular for Wireless Voice/Video?

- Cost
- Usually High Latency
- High Speed Mobiles Still a Focus
- Never Just Digital Cellular—Always Tandeming with Other Networks
- Heavily Standardized
- Intellectual Property Laden
Current Networks for Voice and Video Communications

- Public Switched Telephone Network (PSTN)
- Digital Cellular
- Wireline Packet-Switched Networks
- Wireless Local Area Networks
- Tandem Connections of all of the above
Tandem Digital Cellular with PSTN
Digital Cellular Through PSTN/Wireline VoIP to Digital Cellular

Original
AMR-NB
PESQ MOS = 3.847

G.711
PESQ MOS = 4.127

AMR-NB x G.711 x AMR-NB
PESQ MOS = 3.623

Note:
1) AMR-NB is operated at 12.2kbps
Tandem Digital Cellular and Wireline IP
Digital Cellular Through Wireline VoIP to Digital Cellular

Original

G.729
PESQ MOS = 3.514

AMR-NB
PESQ MOS = 3.525

AMR-NB x G.729 x AMR-NB
PESQ MOS = 3.091

Note: 1) AMR-NB codec operated at 7.95 kbps

2) VMR codec operated in narrowband mode at default rate
Tandem Digital Cellular, Wireline IP, and WLANs
Digital Cellular Through Wireline
VoIP into Voice Over WLAN

AMR-NB x G.711 x G.729
PESQ MOS = 3.283

AMR-NB x G.729 x G.711
PESQ MOS = 3.226

AMR-NB x G.729 x G.729
PESQ MOS = 2.803

Note:
1) AMR-NB is operated at 7.95 kbps
General Multihop Heterogeneous Network--Today
Video Transcoding Example

Coded in H.264 at 329kbps
CIF, 20 frames/sec, high resolution

Decoded then re-encoded in
H.264 at 168kbps
CIF, 20 frames/sec, low resolution
Video Transcoding Example

Decoded then re-encoded in H.264 at 167kbps
CIF, 6.7 frames/sec, high resolution

Decoded then re-encoded in H.264 at 111kbps
QCIF, 20frames/sec, high resolution
Characteristics of These Heterogeneous (Multihop) Networks

• Different Physical Layers
• Different Protocols
• Possible Transcoding at Network Interfaces
• Not Jointly Designed
• Not Jointly Standardized
• No One Entity Responsible
Next Generation Networks for Voice and Video

• WLAN/WiMax
• WLAN Cells
• Wireless Mesh Networks
• Mobile Ad Hoc Networks
• Tandem Connections of These Networks
IEEE 802.11x

- 802.11 Specification of WLAN MAC and PHY layers
- 802.11a PHY layers at 5 GHz (54 Mbps OFDM)
- 802.11b 11 Mbps DSSS at 2.4 GHz
- 802.11c Improvements of the MAC layer
- 802.11d Update (frequency spectrum regulations)
- 802.11e Improvements of the MAC layer (QoS)
- 802.11f Inter-Access Point Protocol (IAPP)
- 802.11g Higher Data rate (>20 Mbps) at 2.4 GHz
- 802.11h Dynamic Channel Selection and Transmit Power Control mechanisms
- 802.11i Authentication and Security
- 802.11n High Throughput Wireless networking (> 100 Mbps) – to be ratified by 2005-06
Active 802.11 Task Groups

- 802.11r: Fast Roaming
- 802.11s: Mesh Networking
- 802.11p: Wireless Access for Vehicular Environment
- 802.11u: Internetworking with External Networks
- 802.11v: Wireless Network Management
- 802.11k: Radio Resource Management
- 802.11t: Wireless Performance Prediction
- 802.11w: Providing Protected Management Frames
Payload Length Dependence for Different Traffic Classes

- **Data**—Maximum Throughput Obtained with Long Packets ~ 2000 Bytes
- **Two-Way Video Communications**—Payload Length ~ 400 to 1500 Bytes
- **Conversational Voice Communications**—Payload Length ~ 20 to 200 Bytes
- **Packet Headers Become Significant**
Throughput Comparison for Various Payload Sizes in Multipath Fading

Effective throughput vs SNR for IEEE 802.11a data rates with 30, 200 and 2000 bytes payload in Multipath Fading with Monte Carlo Simulations.
802.11a and 802.11b Cells and Frequency Reuse
Multiple Channels and System Capacity

- Multiple Indoor/Outdoor Channels
- Reduced Co-Channel Interference (CCI)
- Increased System Throughput
- Larger Coverage Area for a Given Performance
- Useful for Deployment in Infrastructureless Areas
Wireless Ad Hoc Network
Characteristics of Ad Hoc Networks

• 802.11 Based
• Self-Organizing, Ever-Changing Architecture
• Each Router Node Can Generate Traffic
• Each User/Node is Battery-Power Limited
• Multiple Hops per Connection
• Multiple Routes
• Asymptotics Less Useful (compared to sensor networks)
Mesh Networks
Characteristics of Mesh Networks

- 802.11 Based
- Multiple Routes
- Multiple Hops
- Nodes can be placed for optimal performance
- Nodes may be plugged in to a power source
- Nodes do not generate traffic
- May serve as infrastructure networks (not constantly reconfigured)
Issues for Communications Networks

- Multiple Access
- Multiple Paths
- Multiple Antennas
- Multiple Radios (Carriers)
- Multiple Hops
- Multiple Descriptions/Source Diversity
- Compression
- Multiple Tandem Networks
Conclusions

• Wireless local area network (WLAN) access points are inefficient
• WLAN connections are very different from wireline connections
• Multihop wireless networks such as Mobile Ad hoc Networks and Mesh Networks are networks of the future
• Multihop Heterogeneous Networks will be prevalent
Conclusions (cont’d)

• Voice/Video over WLANs is not the same as Voice/Video over Wireline Packet Networks

• Tandem Free Operation will likely be difficult

• Asynchronous tandems of speech codecs will occur and occur today, incurring
 – Quality loss
 – Increased latency

• Transcoding of Video will be necessary
Thank You

• To my colleagues Elizabeth Belding-Royer and Kevin Almeroth in CS at UCSB for freely sharing their ideas
• To my students Jagadeesh Balam, Sayantan Choudhury, Jing Hu, Niranjan Shetty, and Bo Wei for ongoing research discussions