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Abstract 
Using the Shannon backward channel result from 
rate distortion theory, we derive new 
decoder/synthesizer structures for common linear 
predictive speech models.   We calculate the 
transfer functions for these new structures for 
common source models and discuss the effect on 
the reconstructed signal.  The perceptual weighting 
filter and the average distortion both play a 
prominent role.  We show that common CELP 
encoders and decoders lack these components, and 
note that at least at the decoder, postfiltering as 
currently used in CELP may partially compensate 
for the missing structure.  

   
1. Introduction 
1Codebook excited linear predictive coding (CELP) 
is the underlying principle used in all narrowband 
and some wideband standardized speech codecs 
today [1].  Most recent efforts toward the 
development of fullband codecs (20 Hz to 20 kHz) 
utilize a combination of the CELP approach and 
the transform/filter bank approaches with well-
designed switching between the coding methods, as 
is evident in the recently standardized USAC codec 
[2] and as is expected in the EVS codec for LTE 
Mobile Systems [3].  While linear prediction had 
long had success for speech waveform coding and 
was later used for low bit rate voice codecs by 
modeling the vocal tract [4], codebook excited 
analysis-by-synthesis coding using linear 
prediction was first motivated by rate distortion 
theory principles [5-10].      
 
In this paper, we return to rate distortion theory 
fundamentals to examine the structure of the 
decoder and the synthesizer used in the encoder for 
optimal speech coding subject to the squared error 
fidelity criterion.  It is shown that the usual CELP 
decoder should have additional excitation filtering, 
currently not present in CELP codecs, that is 
dependent on the perceptual weighting filter and on 
the average distortion.    
 
The paper is organized as follows.  Section II 
contains a quick review of the linear prediction 
model and CELP codecs.  Section III then uses the 
classical Shannon lower bound and Shannon 
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backward channel concept to derive the form of 
the optimal code generator or decoder for 
sources satisfying the linear prediction model 
with perceptual weighting of the distortion.  
Section IV presents examples of the new 
structures for three simple representative source 
models subject to weighted and unweighted 
squared error fidelity criteria.  Section V presents 
comparisons to current CELP codec structures, 
and Section VII discusses possible 
implementation approaches.  Section VII 
contains some conclusions. 
 
2. Linear predictive Voice Codecs 
Linear predictive coding (LPC) is the dominant 
paradigm for narrowband speech coding in the 
last 40 years.  In LPC, the decoder or synthesizer 
has the form shown in Fig. 1, wherein 
 

 
Figure 1.  The Linear Prediction Model 

 
The output speech is reconstructed according to 
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This decoder structure has been carried over to 
the code-excited linear predictive (CELP) 
analysis-by-synthesis codecs with encoders of 
the form shown in Fig. 2 and decoders as shown 
in Fig. 3.  In these figures, the Synthesis filter is 
the linear predictor given in Fig. 1. 
 

 
Figure 2.  CELP Encoder 
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Having a synthesis filter that mimics the linear 
prediction model appears to be intuitive and well-
motivated.  However, it is well known that other 
modifications such as postfiltering following the 
decoder may improve the reconstructed speech 
in some instances.  In this paper we explore 
alternative decoder structures implied by rate 
distortion optimal lossy source coding theory. 
 

 
Figure 3.  CELP Decoder 

 
3. Rate Distortion Analysis for Difference 
Distortion Measures 
 

To introduce the basic underlying principle 
from rate distortion theory, we begin by 
considering the problem of encoding a memoryless 
Gaussian source X subject to the mean squared 
error (MSE) fidelity criterion.  A classic lower 
bound on the rate distortion function for difference 
distortion measures, first introduced in Shannon’s 
original paper on rate distortion theory in 1959, is 
called the Shannon lower bound [11].   

 
When this bound is satisfied with equality for 

an average distortion 
1

D , the optimally encoded 

output, 
1

X̂ , satisfies the Shannon backward 

channel condition expressed by [5] 
ˆX X Z= +    (1) 

where if X is zero mean, Gaussian with variance 
2σ , then X̂  is zero mean, Gaussian with variance 

2ˆvar( )X Dσ= − , and Z  a zero mean Gaussian 

random variable that is statistically independent of 

X̂ with variance D .  Memoryless sources do not 
give us much insight into the coding of actual 
speech signals so we turn our attention now to 
sources that satisfy the linear prediction model.  
However, after suitable transformations, the 
Shannon backward channel condition can still be 
imposed to provide the essential results. 
 
     An mth-order, time-discrete AR source can be 
expressed as  

1

m

t k t k t
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where 1,....., ma a are the AR coefficients, and 

{ }tZ is a sequence of independent and identically 

distributed (iid) random variables, and rX and 

sZ are statistically independent if s>r.  The 

Shannon backward channel formulation has been 
used by Berger to analyze optimal tree encoding 
of Gaussian autoregressive (AR) sources subject 
to the MSE distortion measure.  In his analysis, 
not repeated here, Berger shows that the power 
spectral density (psd) of the optimal 
reconstructed value is of the form [5] 

( ) ( )Y Xz z DΦ = Φ −                             (3) 

for average distortion D.  For an AR source, the 
source psd is 
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which upon substitution into the above yields 
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This perhaps surprising result shows that the 
reconstructed output is no longer purely AR, but 
it is now an autoregressive moving average 
(ARMA) sequence, where the MA part is 
dependent on the average distortion and on the 
linear prediction coefficients through the 
numerator polynomial B(z). 
 
The analysis can be extended to the optimal 
encoding of this AR source subject to a weighted 
squared error distortion measure to obtain 

2
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z z

W z
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where ( )W z is the frequency weighting of the 

reconstruction error ( the distortion).  
Substituting as before for the psd of the input, we 
obtain the expression [12] 
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The results in Eqs. (5) and (7) are subject to the 
small distortion condition, namely,  
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Which also guarantees that the B(z) polynomial in 
the numerator of the needed form exists.  The 
numerator polynomial in the expression for the psd 
of the reconstructed source now depends upon the 
perceptual weighting function as well as the 
average distortion and linear prediction coefficients. 
 
These results imply that the synthesizer in the 
encoder and the decoder in CELP codecs should 
not simply be the linear prediction model with 
appropriate excitation.  In the following sections, 
we investigate the impact of the change in the 
numerator on the reconstructed spectrum. 
 
4. The Excitation Shaping Filter 
We denote the numerator polynomial B(z) as the 
excitation shaping filter and we illustrate the form 
of this filter with and without perceptual weighting 
for three different source spectra, a 3rd order 
Butterworth shaping, a 3rd order AR shaping based 
on the coefficients in [6,13], and a 10th order AR 
model.  The power spectral densities of these 
sources are shown in Fig. 4. 

 
Figure 4.  Power Spectral Densities of Example 

Sources 
 

For the unweighted case, the excitation shaping 
filter has the form shown in Fig. 5.  Expanding 
both sides of the numerators in Eq. (5), we obtain 
n+1 nonlinear equations in n+1 unknowns.  Using 
a nonlinear optimization technique, these equations 
can be solved for the coefficients of B(z) [12].  
 
For the case with weighting, we use the weighting 
function 

1 2
( ) ( ) ( )W z A z A zγ γ=                      (9) 

where 1γ and 2γ are 0.94 and 0.6, respectively, 

since these parameters are used for some modes of 
the AMR-NB codec.  With weighting, the structure 
of B(z) becomes more complicated and has the 
form shown in Fig. 6.  In this case, upon expanding 
the numerator of the expression in Eq. (7), where 

R(z) is the numerator of B(z) and Q(z) is the 
denominator of B(z), we obtain 2n+1 nonlinear 
equations in 2n+1 unknowns.  The solutions of 
this nonlinear optimization are nonunique and 
depend on the initial conditions and the 
optimization scheme [12].   
  

 
Figure 5. Excitation Shaping Filter B(z) for No 

Perceptual Weighting 
 
 
The details of calculating the B(z) expressions 
are given elsewhere, but we exhibit the 
magnitude response of the resulting filters for the 
unweighted and weighted cases and different 
average distortions for each of the three sources 
in Figs. 7, 8, and 9. 
 

 
Figure 6.  Excitation Shaping Filter B(z) with 

Perceptual Weighting 
 

From Figs. 7 and 8 for the 3rd order sources, we 
observe the following: 
• B(z) has a low-pass filtering effect, the 

intensity of which increases with an increase in 
distortion. 

• For the same distortion, the frequency response 
of B(z) with no weighting has a more severe 
low-pass filtering effect relative to the 
frequency response of B(z) with weighting. 

• As distortion D is increased, we reach a point 
where the small distortion condition is not 
valid for MSE distortion but remains valid for 
weighted MSE distortion. This is true in the 
case of D=0.15 for the Butterworth 
coefficients and D=0.1 for the McDonald 
coefficients. 
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Figure 7.  B(z) for 3rd Order Butterworth Source  

 
The low-pass filtering effect of B(z) has been 
attributed in [6] to the rate distortion theory trading 
off the high frequency signal component (where 
the quantization effects are centered) against a 
reduction in noise. When weighting is used, the 
weighted distortion at high frequencies is reduced 
due to a redistribution of the noise across the 
spectrum. This may explain why the low-pass 
effect is less severe in case of weighted MSE, 
relative to when no weighting is used.  
 

 
Figure 8.  B(z) for 3rd Order MacDonald Source  

 
For the AR(10) source in Fig. 9, the observations 
are similar to those that we had observed earlier for 
AR(3), but the weighting filter parameters play a 
more prominent role.  
 
From Fig. 9, we note that: 
• The low pass filtering effect in the frequency 

response of B(z) increases in severity as the 
distortion increases for both MSE and weighted 
MSE. 

• In comparing the frequency response of B(z) 
without and with weighting, we see that 
weighting reduces the severity of the low pass 

filtering, relative to the case when no 
weighting is used. This is true for the cases 
where both the unweighted and weighted MSE 
satisfy the small distortion condition 
(D=0.005).  

• For D=0.01 and D=0.05, the case without 
weighting does not satisfy the small distortion 
condition, and hence B(z) cannot be determined. 
However, for these specified values of D, when 
weighting is used, the small distortion 
condition is satisfied, allowing us to determine 
B(z). 

•  We observe some shaping in the low 
frequencies visible for B(z) with weighting 
when D=0.05. To investigate this effect,we 
adjusted the weighting filter parameters, and 
the B(z) for a value of γ2 =0.2 is shown in Fig. 
10. 

 

 
Figure 9.  B(z) for 10th Order AR Source  

 
 

 
Figure 10.  B(z) for 10th Order AR Source with 

Different Weighting 
 

We see that the shaping is more prominent and 
the formants on the source spectrum start to 
appear. This value for the parameter γ2 may 
appear due to adaptation of the perceptual 
weighting filter, but some codecs put upper and 
lower bounds on the value of this parameter.  For 
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example, G.729 bounds γ2 to be between 0.4 and 
0.7 [14].  Following the explanation in [6] for the 
high-frequency effect, the shaping of the B(z) 
observed in Fig. 10 that emphasizes formant 
frequencies and de-emphasizes formant valleys and 
high frequency components can be said to be 
trading-off signal fidelity at formant valleys and 
high frequencies against a reduction in perceived 
noise.  

 
5.  Decoder Structures in CELP Codecs  
For comparison purposes, we now examine the 
reconstructed output of the common standardized 
CELP codecs.  The weighted reconstruction error 
in the analysis by synthesis calculation has the 
form 

ˆ( ) ( )[ ( ) ( )]E z W z S z S z= −                        (10) 

which upon rewriting yields,  

1ˆ( ) ( ) ( )
( )

S z S z E z
W z

= +                       (11) 

By comparing to the Shannon backward channel 
condition, we see that this has the same form, and 
if the sequences are Gaussian and if we argue that 
ˆ( )S z  is selected to satisfy the orthogonality 

condition from optimal estimation, the error will be 
independent of the reconstructed output.  However, 
the expression for the transfer function of the 
decoder is  

1
( )

( )
H z

A z
=                                  (12) 

Therefore, the common CELP decoders (and 
encoders) lack the excitation shaping filter implied 
by rate distortion optimal encoding.   
 
CELP decoders often have a postfilter with a 
numerator polynomial that may inadvertently 
compensate for this oversight, although the 
dependence on the average distortion is not explicit 
and of the same form.  The rate distortion 
motivated structures will have the excitation 
shaping at the encoder too, within the analysis by 
synthesis loop, which is always lacking in current 
CELP codecs. 
 
6.  Implementations 
The process to determine the rate distortion theory 
motivated excitation filter is quite involved, and 
therefore one has to determine how this approach 
might be incorporated into a practical voice codec.  
One approach would be to use the structure in Fig. 
6, with the weighting parameter updated as in 
CELP, but with the remaining coefficients adapted 

according to algorithms as in Gibson [15].  
Several other approximate structures are possible. 

 
7.  Conclusions 
The Shannon backward channel result from rate 
distortion theory is shown to require zeros in the 
decoder/synthesizer structures for common all 
pole, linear predictive speech models.   This is in 
contrast to the usual decoders/synthesizers used 
in popular CELP codecs.  We calculate the 
transfer functions for these new structures for 
common source models and discuss the effect on 
the reconstructed signal.  The parameters in the 
perceptual weighting filter and the average 
distortion both change the shaping of the 
excitation.  Although the common CELP 
encoders and decoders lack these components, it 
is noted that, at least at the decoder, postfiltering 
as currently used in CELP may partially 
compensate for the missing structure.  
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