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Abstract—In transform-based compression schemes, the task
of choosing, quantizing, and coding the coefficients that best
represent a signal is of prime importance. As a step in this direc-
tion, Yang and Gibson [1] have designed a coefficient selection
scheme based on Campbell’s coefficient rate and spectral entropy
[2]. Building on the spectral entropy-based coefficient selection
mechanism, we develop a scheme to allocate bits amongst the
chosen coefficients. We show that the proposed scheme can
outperform the classical method under certain conditions. We
then design quantization matrices (QMs) based on the proposed
bit allocation method and show that the newly designed QMs
perform better than the default QMs for H.264/AVC encoding in
terms of both peak signal to noise ratio (PSNR) and structural
similarity (SSIM).

I. INTRODUCTION
Transform coding paradigms are very popular today in

audio, image and video compression schemes because of
their energy compaction properties. In applications where the
bandwidth is limited, it is not possible to transmit all transform
coefficients and hence some coefficients need to be discarded.
Therefore it is important to choose or sample the transform
coefficients that best represent a signal and code them with
high fidelity.
In 1960, Campbell [2] first examined the problem of sam-

pling a random process with non-rectangular power spectral
densities (PSD) and demonstrated that the products of a large
number of sample functions of such a random process require
average sampling rates less than the Nyquist rate. Using a
version of the asymptotic equipartition property (AEP), he
proved that a Karhunen-Loéve (K-L) expansion of the product
of N sample functions of a stationary random process X(t)
could be separated into two sets: one with average power
very close to that of the product and the other with very
low average power. Asymptotically in the number of sample
functionsN and the support interval T ofX(t), he showed that
the average number of terms in the high energy set approached
the coefficient rate Q defined as

Q = exp

[
−
∫

S(f) logS(f) df

]
, (1)

where S(f) is the normalized PSD of X(t). The spectral
entropy is the quantity in the exponent and is given by
h(S) = log(Q). Campbell presented this as a sampling result
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but did not explore the application of the spectral entropy and
coefficient rate for data compression. Additionally, Abramson
[3] examined Campbell’s results and observed that a compres-
sion scheme based on spectral entropy was not apparent.
Entropy-based indicators have been employed in adaptive

coding applications independent of Campbell’s work. In a two-
dimensional discrete cosine transform (DCT) based coding
scheme, Mester and Franke [4] used two factors to classify
data blocks and adopted different coding strategies for the
different classes. For two-dimensional transform coefficients
C(i, j), they defined the activity measure A =

∑
i,j |C(i, j)|

which reflects the total energy of the data block. The spec-
tral entropy, E = −∑i,j a(i, j) log a(i, j) where a(i, j) =
|C(i, j)|/A, was defined as a measure of the energy com-
paction achieved by the transform. These two measures were
used to estimate the amount of tolerable errors and sensi-
tivity to quantization and/or truncation and thus develop an
adaptation scheme for a threshold coding system. Coifman
and Wickerhauser [5] applied a similar approach to select the
best basis for signal representation. For transform coefficients
xn, they defined the theoretical dimension of the signal as
d = exp (−∑n pn log pn), where pn = |xn|2/‖x‖2. They
interpreted d as a measure of the number of coefficients
to be coded in a wavelet transform, and chose the wavelet
packet basis with minimum d as optimal, since it produces the
minimum number of coefficients. This method was extended
to other transforms for speech processing in [6].
Around the same time, Gibson, Stanners, and McClellan [7]

investigated the properties of Campbell’s coefficient rate for
autoregressive (AR) processes and speech signals. In speech
experiments, the signal energy and spectral entropy were
shown to be different indicators of activity, similar to the
results of Mester and Franke [4] for transform coding of
images. McClellan and Gibson [8] utilized spectral entropy for
voiced/unvoiced decisions with applications to speech coding
and showed that for the computation of spectral entropy in two
subbands, the voice activity decision could be made robust
to additive noise. In [8], McClellan and Gibson used more
sophisticated variable rate indicators based on spectral entropy
calculations to develop a variable rate tree coder operating at 4
to 5 kbits/s. These spectral entropy based rate indicators were
then combined with a code-excited linear predictive (CELP)
coder in [9] to achieve good quality speech at average rates
in the 2 kbits/s range.
Almost thirty years after Campbell’s work, Yang and Gib-



son [1], [10]–[13] examined Campbell’s coefficient rate and
theoretically derived a new mechanism for selecting the sig-
nificant coefficients i.e those that best represent a signal. They
proved that the number of significant coefficients in each
component should be proportional to the energy/variance of
that component. Another interesting outcome of Yang and
Gibson’s research was the interpretation of the Campbell
bandwidth Wc = Q/2 as the minimum average bandwidth for
encoding the process across all possible distortion levels and
its relationship to the well-known Fourier [11] and Shannon
bandwidth [13].
Kokes and Gibson [14] applied Yang and Gibson’s spectral

entropy-based coefficient selection to wideband speech coding
and showed results that were perceptually better than those
of conventional speech coders. More importantly, they devel-
oped a band combining strategy based on spectral entropy
to formulate an adaptive nonuniform modulated lapped bi-
orthogonal transform (NMLBT) [15], [16]. The more precise
frequency selectivity was shown to improve the performance
of a wideband speech coder for both speech and audio signals.
The previous research discussed above uses Campbell’s

coefficient rate and spectral entropy as a basis for efficiently
sampling frequency coefficients. Yang and Gibson [13] have
shown that the Campbell bandwidth is the minimum aver-
age bandwidth for encoding the process across all possible
distortion levels. In addition, Jung and Gibson [17] have
obtained an expression for coefficient rate using the logarithm
of the ratio of rate distortion function slopes of the given
source and a uniform source, where the logarithm is averaged
over large distortions. These results indicate a relationship
between coefficient rate and the rate-distortion function of
a source. However, to the best of our knowledge, no efforts
have been made towards developing a spectral entropy-based
coding scheme. Hence in this work, we build on the spectral
entropy-based coefficient selection mechanism and derive a
scheme that can be used to allocate bits amongst the chosen
significant coefficients. We show that it is possible for the
spectral entropy-based bit allocation method to out-perform
the classical bit allocation scheme.
This paper is organized as follows. Section II briefly ex-

plains Yang and Gibson’s coefficient selection mechanism for
the sake of completeness. Section III develops the spectral
entropy-based bit allocation method. Section IV compares the
proposed method with the classical bit allocation method.
Mathematical results used in this section, but not directly
related to the work, are relegated to Appendix A. Section V
discusses the application of the proposed scheme to design
quantization matrices (QMs) for H.264/AVC video coding and
presents results that show improvement over the default QMs.
Finally, Section VI summarizes the work presented.

II. SPECTRAL ENTROPY-BASED COEFFICIENT SELECTION
In this section, we briefly go over the mathematical basis

and a description of the spectral entropy-based coefficient
selection proposed by Yang and Gibson [13]. Consider a zero-
mean stationary continuous-time random process X(t). Using

the K-L expansion in the time interval [0, T ], the process can
be decomposed as

X(t) =

M∑
i=1

Ciφi(t), (2)

where φi(t)’s are normalized eigenfunctions and Ci’s are un-
correlated random variables with E[Ci] = 0 and E[C2

i ] = λi.
Hence, the random process can be represented by a random
vector {C1, C2, . . . , CM} and the total average energy of the
process is σ2 =

∑M

i=1 λi. Assuming that S(f), the PSD of
X(t) is normalized (integrates to 1), it can be shown that∑M

i=1 λi = T .
Let x1(t1), x2(t2), . . . , xN (tN ) be N independent sample

functions of X(t) where each sample function can be ex-
pressed as

xi(tj) =

M∑
i=1

cijφi(tj), 0 ≤ tj ≤ T, j = 1, 2, . . . , N.

(3)
Therefore the product of these N independent sample functions
can be written as

y(t1, t2, . . . , tN ) = x1(t1)x2(t2) · · ·xN (tN )

=

MN∑
k=1

c(k)φ(k)(t1, t2, . . . , tN ), (4)

where c(k) is the product of cij ’s and φ(k)(t1, t2, . . . , tN ) are
the corresponding products of φi(tj)’s. Assume that the c(k)’s
are ordered in decreasing order of their variances in the sum
in (4).
Campbell [2] approximated y(t1, t2, . . . , tN ) by choosing

μ(< MN ) c(k)’s with the largest variances such that the
average energy loss of the approximation is small. The ap-
proximation to y(t1, t2, . . . , tN ) is

yμ(t1, t2, . . . , tN ) =

μ∑
k=1

c(k)φ(k)(t1, t2, . . . , tN ), (5)

Since all the sample functions are independent, we have
C(k) = Ci1Ci2 · · ·CiN and

E[(C(k))2] = E[(Ci1)
2]E[(Ci2)

2] · · ·E[(CiN )2]

= λi1λi2 · · ·λiN . (6)

Therefore, the total energy of the product is

E[y(t1, . . . , tN )2] =
MN∑
k=1

E[(C(k))2]

=
M∑

i1,i2,...iN=1

λi1λi2 · · ·λiN =

(
M∑
i=1

λi

)N

=
∑

{ni:
∑

M

i=1
ni=N}

[
N !

n1! · · ·nM !

]
λn1
1 · · ·λnM

M .

(7)



In (7), the quantity in square brackets is the count of
repetitions of the energy term that follows it. As N → ∞,
the largest term in the sum in (7) grows much faster than
the others and dominates the total energy of y(t1, t2, . . . , tN ).
Hence finding the largest term of N !

n1!···nM !λ
n1
1 · · ·λnM

M subject
to
∑M

i=1 ni = N would give us μ in (5) [13].
Using the approximation logN ! = N logN − N for large

N and Lagrangian optimization, Yang and Gibson showed that
for the largest term in (7)

ni =
λi

σ2
N, i = 1, 2, . . . ,M, (8)

that is, the number of λi occurrences in λn1
1 λn2

2 · · ·λnM

M is
proportional to λi [13].
Therefore for large N , μ, the number of high energy

coefficients in y(t1, t2, . . . , tN ) is

μ ≈ N !

n1!n2! · · ·nM !

= exp

[
−N

M∑
i=1

ni

N
log

ni

N

]
= eNH(S) (9)

where H(S) = −∑M
i=1

λi

σ2 log
λi

σ2 is the spectral entropy in
discrete form.
This alternative derivation of Campbell’s result provides

insights into coder design and implies a method of selecting
the coefficients that best represent a signal [13]. Equation
(8) suggests that in a sequence of N samples of a particular
coefficient, the number of coefficient samples that should be
coded is proportional to the variance of the coefficient. The
basic approach to source compression implied by the spectral
entropy results is illustrated in Fig. 1. Fig. 1(a) shows M
transform coefficients for N blocks of source data, denoted
Cij , i = 1, . . . ,M, j = 1, . . . , N , where i is the component
index and j the block index. In classical transform based
coding, coefficient bit allocation is accomplished on a block-
by-block basis as illustrated in Fig. 1(b). That is, given a
particular block (fixed j), a fixed number of bits is allocated

across the M coefficients according to their relative energies.
However, the spectral entropy approach implies that each
component should be considered as a separate sequence, Cij ,
j = 1, . . . , N , as shown in Fig. 1(c), and the significant values
of that component in the sequence should be determined based
on its energy. In other words, a coefficient is more likely to be
coded if it has high energy. In contrast to the classical method,
this coefficient selection mechanism entails delay and achieves
better signal-to-noise ratio (SNR) (with no rate control) [10]
and subjective quality [12].

III. SPECTRAL ENTROPY-BASED BIT ALLOCATION

Consider the decomposition in (2). As before, let the M
components {Ci, i = 1, 2, . . . ,M} be independent with
E[Ci] = 0 and E[C2

i ] = λi. Without loss of generality, we
can assume that the components are ordered based on their
energies i.e. λ1 ≥ λ2 ≥ . . . ≥ λM . Let there be N sampling
functions (blocks/frames) each with M such components.
Out of the total M × N coefficients, let L coefficients be
coded. Then the spectral entropy-based coefficient selection
[1], [13] dictates that the number of coefficients ni coded in
each component be proportional to the variance λi of that
component i.e. ni = piL, where pi =

λi

σ2 and
∑M

i=1 λi = σ2.
If b

(S)
i is the average number of bits spent to code a

coefficient of component i, the total number of bits spent is
B =

∑M

i=1 nib
(S)
i . The coding distortion is generated by two

sources: quantization and discarding coefficients. Hence the
expected value of the distortion of the ith component can be
written as

d
(S)
i = ni × E(quantization error)+

(N − ni)× E(energy of discarded coefficients)

= ni × hiλi2
−2b

(S)
i + (N − ni)× λi (10)

In this equation, the quantization error is computed assum-
ing that the overload distortion is negligible and the high-
resolution approximation holds and hi is a constant determined
by the distribution of the normalized random variable Ci/

√
λi

[18].
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Fig. 1. Encoding transform coefficients. (a) Coefficients of N blocks, (b) Encoding block by block, (c) Encoding component by component.



Hence, the problem of bit allocation is to find b
(S)
i for

i = 1, 2, . . . ,M so as to minimize D(S) =
∑M

i=1 d
(S)
i subject

to the constraint that
∑M

i=1 nib
(S)
i = B. Using Lagrangian

optimization methods, the number of bits b(S)
i allocated to each

of the ni coded coefficients of component i can be shown to
be

b
(S)
i =

B

L
+

1

2
log2

(
hiλi∏M

i=1(hiλi)
λi

σ2

)
. (11)

This is similar to the result of classical bit allocation [18]
except that the geometric mean of hi’s

∏M

i=1 h
1
M

i has been re-

placed by
∏M

i=1 h
λi

σ2

i and the geometric mean of λi’s
∏M

i=1 λ
1
M

i

has been replaced by
∏M

i=1 λ
λi

σ2

i . The corresponding total
distortion is

D(S) = L2−
2B
L

M∏
i=1

(hiλi)
λi

σ2 +Nσ2 −
M∑
i=1

niλi. (12)

A. Bit-allocation scheme
Given N blocks with M components each (a total of MN

coefficients) and a bit budget of B, the problem is to choose
and code L coefficients such that the overall distortion is
minimized. Summarizing the spectral entropy-based coding
method, the steps involved in choosing significant coefficients
and allocating bits to them are as follows.
1) Compute the empirical variance λ̂i of the ith component

using N samples.
2) Compute the number of coded coefficients ni in the ith

component using ni =
λ̂i

σ̂2
L where σ̂2 =

∑M

i=1 λ̂i.
3) Treating the empirical variance as the true variance,

compute b
(S)
i , the bits allocated to each coefficient of

the ith component using (11). Alternatively, a practical
non-negative integer constrained allocation method such
as the one proposed in [19] can be used with the cost
function as defined in (10).

4) Of the N coefficients of the ith component, choose ni

coefficients with the largest magnitudes and code each
of them using b

(S)
i bits.

However, for this scheme, we first need to determine L,
the number of coefficients that need to be coded. L can be
computed by starting with an estimate for the average bits
per coded coefficient and then refining it around the initial
estimate based on a rate-distortion cost. Alternatively, L can
be computed as the total bit budget divided by the average
bits per coded coefficient, where the average bits per coded
coefficient is estimated as a function of the distribution of
energy amongst the transform components and the function is
determined using offline training.

IV. COMPARISON OF SPECTRAL ENTROPY-BASED AND
CLASSICAL BIT ALLOCATION SCHEMES

In a classical bit allocation scheme, where B bits are to be
allocated among the M components of N blocks, each block
is coded independently. Hence, B/N bits are allocated to the
M coefficients within a block. If C coefficients are coded

out of the M coefficients in each block, the total number of
coefficients that are coded becomes CN . Assuming that the
coded components are those with the largest variances, the
first C coefficients in each block are coded. The bits allocated
to each coefficient of the ith component can be written as

b
(C)
i =

⎧⎨⎩ B
CN

+ 1
2 log2

(
hiλi∏

C

i=1
(hiλi)

1
C

)
, if 1 ≤ i ≤ C

0, if C + 1 ≤ i ≤M.
(13)

Hence the total distortion for all the MN coefficients is the
sum of the quantization error and the error from discarding
coefficients and is given by

D(C) = CN2−
2B
CN

C∏
i=1

(hiλi)
1
C +N

M∑
i=C+1

λi. (14)

Given a bit budget B, we compare the distortions of the
two bit allocation schemes, assuming that the same number of
coefficients are coded in both cases i.e L = CN . For easier
analysis, we also assume that all the M components have the
same normalized distribution i.e. hi = h for i = 1, 2, . . . ,M .
Then, with pi =

λi

σ2 , the difference in the distortions per coded
coefficient is given by

D(C) −D(S)

CN
= 2−

2B
CN h

[
C∏
i=1

λ
1
C

i −
M∏
i=1

λpi

i

]

+

[
M∑
i=1

piλi −
∑C

i=1 λi

C

]
. (15)

Using (A.21) and (A.22),

D(C) −D(S)

CN
≥ 2−

2B
CN h

[
M∏
i=1

λ
1
M

i −
M∏
i=1

λpi

i

]
︸ ︷︷ ︸

≤0

+

[∑M
i=1 λi

M
−
∑C

i=1 λi

C

]
︸ ︷︷ ︸

≤0

. (16)

Similarly, we have

D(C) −D(S)

CN
≤ 2−

2B
CN h

[
C∏
i=1

λ
1
C

i −
M∏
i=1

λ
1
M

i

]
︸ ︷︷ ︸

≥0

+

[
M∑
i=1

piλi −
∑M

i=1 λi

M

]
︸ ︷︷ ︸

≥0

. (17)

From Equations (16) and (17), we observe that D(C)−D(S)

is lower bounded by a non-positive number and upper bounded
by a non-negative number. Thus in certain cases D(C) ≥ D(S)

i.e. the spectral entropy-based bit allocation scheme outper-
forms the classical bit allocation scheme. However, a closed
form expression for the range of C under which D(C) ≥ D(S)

is not evident from (15). Additionally, when λi = σ2/M for



all 1 ≤ i ≤ M and C = M , the two bit allocation schemes
become identical and D(C) = D(S).

V. APPLICATION: QUANTIZATION MATRIX DESIGN FOR
H.264/AVC VIDEO CODING

The Fidelity Range Extensions (FRExt) of the H.264/AVC
standard allow the use of quantization matrices (QMs) that
can be updated at frame level. Although default QMs are
specified in the standard, the encoder can specify a customized
QM for each transform block size and separately for intra and
inter prediction, for use in inverse-quantization scaling by the
decoder [20].
In order to explore the practical implications of the proposed

bit allocation scheme, we employ it to design QMs for the
H.264 encoder. For each P frame, the residual transform
coefficients of all the inter luminance blocks are buffered and
used to design the luma inter 4 × 4 QM. The coefficients
selected using the spectral entropy-based coefficient selection
[13] are quantized using the designed QMs and finally entropy
coded. We compare the coding performance with the proposed
QMs with that of the default QMs based on peak SNR
(PSNR) and structural similarity (SSIM) [21], a perceptual
video quality metric.
In our experiments, the high profile of the JM17.0 encoder

was used with IPPP. . . group of pictures (GOP) structure
and an intra-period of 15. The RD curves were obtained
by encoding the test video sequences at four quantization
parameters (QP): 20, 25, 30, 35. Due to space restrictions
in this paper, we limit our results to 2 video sequences at
176 × 144 (QCIF) resolutions: “container” (still camera on
a slow moving scene) and “mobile” (complex motion with
camera panning and zooming; high spatial and color detail).
Fig. 2 plots the distortion of the luma component versus
the average bits per frame for the encoder using the default
QMs (reference method) and newly designed QMs (proposed
method). Curves are provided using both PSNR and SSIM
as distortion metrics. It can be seen that the proposed QMs
perform better than the default QMs in terms of both PSNR
and SSIM. A PSNR improvement of up to 1dB can be
observed accompanied by a slight improvement in perceptual
quality as indicated by SSIM. Fig. 3 provides the 39th frame
of the QCIF “mobile” sequence encoded at QP = 35 using
both the reference and proposed methods. It is evident that
the frame compressed using the proposed method retains more
details as seen in the inset around the numbers 21-23.

VI. CONCLUSIONS

This work derives and develops a bit allocation scheme
based on the concepts of coefficient rate and spectral entropy.
It has been shown that the proposed scheme can outperform
the classical bit allocation method under certain conditions. An
application of the proposed scheme to design QMs for a H.264
video encoder on a per-frame basis is discussed and shown to
achieve better compression performance than the default QMs
of H.264.

APPENDIX

A. Relation between various arithmetic and geometric means
The geometric mean(GM)-arithmetic mean(AM) inequality

states that for positive real numbers x1, x2, . . . , xn

n∏
i=1

x
1
n

i ≤
∑n

i=1 xi

n
(A.18)

with equality when xi = x for all i = 1, 2, . . . , n. The
generalization of the GM-AM inequality states that for any
w1, w2, . . . , wn such that

∑n

i=1 wi = 1

n∏
i=1

xwi

i ≤
n∑

i=1

wixi. (A.19)

Hence,
∏M

i=1 λ
1
M

i ≤
∑

M

i=1
λi

M
and

∏M
i=1 λ

pi

i ≤ ∑M
i=1 piλi,

with equality in both cases iff λi = σ2/M for all i =
1, 2, . . . ,M . Recollect that pi = λi/σ

2.
Additionally, using the Jensen’s inequality on the log func-

tion that is convex ∩ (concave), we have

log

M∏
i=1

λpi

i =

M∑
i=1

pi log pi + log σ2

≥ (

M∑
i=1

pi) log

∑M

i=1 pi∑M

i=1 1
+ log σ2

= log
σ2

M
(A.20)

Hence
∏M

i=1 λ
λi

σ2

i ≥ σ2/M with equality iff λi = σ2/M for
all i = 1, 2, . . . ,M .
Therefore,

M∏
i=1

λ
1
M

i ≤
∑M

i=1 λi

M
≤

M∏
i=1

λpi

i ≤
M∑
i=1

piλi, (A.21)

with equality at all points iff λi = σ2/M for all i =
1, 2, . . . ,M .
Also, since λ1 ≥ λ2 ≥ . . . ≥ λM , it is evident that

(
∑C

i=1 λi)

C
≥
∑M

i=1 λi

M
and

C∏
i=1

λ
1
C

i ≥
M∏
i=1

λ
1
M

i . (A.22)
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(b)
Fig. 2. Comparison of performance for QCIF “container” sequence. (a) PSNR vs. bits/frame (b) SSIM vs. bits/frame
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Fig. 3. Frame 39 of QCIF “mobile” sequence encoded at QP = 35 with inset showing an enlarged portion. (a) Original (b) Encoded using reference method
(c) Encoded using proposed method
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